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1. Introduction 

 

 One of the main tasks of functional genomics is the study of the role/activity of a given 

expressed/purified protein in vivo, for which it should be inserted in cultured cells or an 

organism. Initially, this problem was solved in an indirect way based on the transfection of cells 

with a proper active viral DNA (construction of a proper DNA-vector) with subsequent 

production of the given protein by cell's own. Later, they started to manage without the DNA-

transfection stage, trying to deliver the protein into the cell directly. The first protein delivery 

methods, however, were the same as those for DNA, such as electroporation, microinjection, 

cationic lipids, and others. These are, in particular, too invasive and low-efficient. Thus, 

electroporation often entails ruining a considerable number of cells; microinjection (insertion of 

femtoliter volumes into a certain cell compartment) needs too specific equipment and 

sophisticated skill while only single cells are processed, so on. In addition, these methods are 

suitable for laboratory experiments but are practically inapplicable in vivo for their potentially 

high toxicity, immunogenicity, etc. 

 That is why in the last decade a great enthusiasm was sparked to the discovered ability of 

some proteins (and then their excised sequences) to be internalized into cells by themselves and, 

moreover, to deliver there other macromolecular components, often much larger than the carrier. 

Early reports about such a peptide appeared in late eighties with the example of the protein-

transactivator of transcription of the human immunodeficiency virus, HIV-1 Tat protein [1-3]. In 

those works it was already said about great potentiality of the phenomenon for the intracellular 

delivery of macromolecules previously thought to be impermeable to cellular membranes; the 

evidences of that were reported soon, see e.g. work [4] in which Fawell et al showed the entry of 

proteins cross-linked with relatively large (at that time) Tat-peptides into cultured tissue cells. In 

a sort, a boom was initiated by the reports of Dowdy et al in late nineties (see e.g. [5]) about 

successful and fast delivery even of large (e.g. β-galactozidase, Mw 120 kDa) proteins fused 

with a small peptide (Tat-protein fragment) into all mouse tissues, brain included, after 

intraperitoneal injection. In numerous subsequent works one can trace both a considerable 

extensive progress – the number of such oligopeptides called protein transduction domains 

(PTDs) has grown from a few (HIV-1 Tat PTD, Drosophila Antennapedia homeodomain 

penetratin, or Antp, and some others) to about a hundred, as is noted in the recent mini-review 

[6] – and a diversity of serious controversies, presently culminating to be resolved. The reason of 

such a sharp interest to the problem is obvious at least from its applied aspect. From a number of 

works it followed that the translocation of such peptides and their cargo seemed practically non-
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specific and almost universal (either to the cell type or cargo), did not go in the classical 

receptor/endocytosis ways and, in addition, proceeded much faster in comparison with 

conventionally used methods. Also, the degree of risk or toxicity turned out to be incomparably 

lower. In the popular scientific literature and on the sites of commercial producers they started to 

speak about a new era in pharmacology and therapy ([7-8], see also [9]). On the other hand, the 

phenomenon looked absolutely incomprehensible at least from the commonly accepted 

physicochemical views on the impermeability of lipid membranes for such highly 

charged/hydrophilic molecules as cell-penetrating peptides (CPPs).1 Besides, a series of results 

have been called into question for unreliability/limitations of the observation methods, especially 

those that denied the endocytic pathways of the translocation; that is, called into question was the 

very phenomenon of protein transduction. 

 The goal of the present deliverable is to review the current literature in the field and select 

those of the data available that can serve as a starting point in the physical analysis and computer 

modeling of the transduction mechanisms as the latter aspects, despite of the problem 

importance, still remain practically inelaborate. 

 

2. Cell-penetrating peptides: general features (outline) 

 

 Langel et al [6,11] relate the term CPP to up to thirty amino acid amphiphilic peptides 

which can be internalized by cells by energy-independent mechanisms (although the endocytic 

pathway is not exluded). According to their classification, CPPs can be conventionally divided 

into three classes: protein derived CPPs, model peptides and designed peptides. The first are in 

fact PTDs (with Tat and Antp being most studied), the second represent sequences mimicking 

the structures of known CPPs (typical are oligoarginines, e.g. (R)n=7÷9 [12]); lastly, the third 

comprise chimeras composed of hydrophobic and hydrophilic parts of different origin (e.g. 

transportan consisting of a part of galanin attached to mastoparan via lysine). 

 The primary structure of known CPPS exhibits no special common features apart from 

the fact that all of them are positively charged and amphipathic (except polycationic 

homopolymers). Their net positive charge is ensured mainly by arginines and, to lower extent, 

lysines; thus, (+8)-charged basic domain Tat49-57 RKKRRQRRR contains six arginine and two 

lysine residues. 

 There are controversial data on the role of the secondary structure. Thus, Derossi et al 

[13] revealed that internalization of Antp is not hampered by introducing up to three prolines into 

 
1 Most general term comprising both PTDs and model or chimeric oligopeptides having the 

mentioned properties [10]. 



the sequence, i.e. by disruption of the α-helical structure. Together with demonstration of the 

translocation of reverse helices and D-enantiomers, this allowed the authors to conclude that the 

internalization mechanism is receptor-independent (but see [14]). For model CPPs studied in 

[12] (in particular, (R)9 and (r)9) the translocation efficiency is somewhat different, but the main 

emphasis was put on the guanidine specificity of the arginine structure and the length and 

conformational flexibility of side chains due to alkyl spacers. The data of Zaro and Shen [15] 

also show the importance of guanidine structure for transduction while mainly the number of 

positive charges determines endocytosis. The advantage of arginine-rich peptides over lysine-

rich ones and minor importance of other structural characteristics are rather frequently mentioned 

(see e.g. [16,17]),2 though there are some reports on better efficiency of lysine homopolymers 

[18,19]. On the whole, so far it is hard to come to a more or less definite conclusion on the 

translocation structural preferences. 

Even greater diversity of data can be reviewed in regard to the types of cells, unnatural 

lipid vesicles and cargoes transported by CPPs. Overwhelming majority of experiments on 

successful translocation is performed in vitro on cultured mammalian cells grown by standard 

methods and then incubated with solutions of CPPs. As for cargoes, their spectrum spreads from 

small peptides and oligonucleotides (see e.g. [20]) to proteins of 120-150 kDa [5,21] and 

liposomes of hundreds of nanometers [22] (see also Tables 2,3 in [6]). They can be attached in 

different ways (usually via a covalent bond); most typical are shown in Fig.1 taken from paper 

[6]. 

 Binding and translocation mechanisms. As noted above, this central question still 

remains unclear and gives rise to sharp contradictions. Starting from early works [2,24,25], an 

intrigue has been generated by reports about bypassing classical endocytic pathways and 

supposedly direct interaction of CPPs with the lipid bilayer of cellular membranes. The main 

argument in favor of such statement was the preserved ability (of either TAT PTD or Antp) of 

translocation at low (4 C) temperature and also under removing ATP sources of energy or in the 

presence of different inhibitors of endocytosis. Reports of this kind accumulated till 2003 

[13,16,17,18,22,26], involving, apart from TAT PTD and Antp, the growing number of different 

CPPs, although opinions in favor of endocytosis were also expressed (e.g. [27]). 

 In 2003, however, the situation seemed to be changed due to appearance of several works 

(first of all [28]) pointed at serious imperfections of the most widespread methods (cell fixation, 

flow cytometry, etc) resulting in the fact that CPPs, strongly interacting with the cell surface, 

were not removed even by repeated washings. Consequently, flow cytometry does not 
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2 However, the number of arginines, as noted in [16], should not be excessive; thus, for 

polyarginines  is opimal, with internalization being practically abolished at . 8n = 12n >



discriminate between internalized and membrane-associated peptides, and this of course leads to 

overrated indices of penetration and other artefacts and wrong conclusions. The authors of paper 

[28] insisted that in live, non-fixed cells a typical endosomal distribution of peptides could only 

be observed and the uptake is inhibited at low temperature and/or ATP depletion. Similar results 

have been obtained in a series of other works of that year [29-32]. 

 
Fig.1. Attachment of cargoes (green) to CPPs (blue). A,B,C and D  represent cargo covalently 

bound to the CPP via a peptide bond, thiazolidine ring, disulphide bridge and bifunctional linker 

molecule, respectively. (E) A large cargo molecule (e.g. streptavidin, shown in dark green) is 

non-covalently bound to a smaller cargo (e.g. biotin, light green) that is covalently attached to 

the CPP [6]. 

 

 Meanwhile, in the same year at least two papers appeared [15,39] whose authors took the 

criticism expressed in [28-32] into account and, nevertheless, came to an unambiguous 

conclusion in favor of the existence of an energy-independent non-endocytic channel of 

internalization at least for several CPPs (e.g. (R)7), though for TAT PTD and Antp this channel 

was found to be somewhat restricted. In work [15] with the help of a newly proposed method of 

subcellular fractionation the contributions of transduction and endocytosis were separated, with 

the transduction ability being observed for different polyarginine peptides and Tat47-57. As 

improbable, the endocytic pathway is also noted in works [34,35]. 

 To the moment, one can register a temporal dynamical equilibrium of opinions on this 

central question. As follows from recent mini-review [6], the transduction ability of CPPs, 

although remaining incomprehensible so far, is doubtless – the authors of [6] in fact include it 

into the very definition of CPPs. On the other hand, for many CPPs the role of endocytosis is far 

from negligible – this is being confirmed by new evidences [36-39], – though the endocytic 

modes could be non-classical (e.g. caveolar, lipid raft, macropinocytosis, so on [29,40]). 
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 There are relatively less data on more detailed models of CPP membrane binding and 

translocation. More or less convincingly, one can assert that an important role in the CPP binding 

to the cellular surface is played by ubiquitous proteoglycans (PG), precisely, their 

glycosaminglycan chains (GAG), most frequently heparan sulphate (HS). Evidences to this, 

qualitative estimations of the binding/dissociation constants included, are given in many works 

[18,19,27,29,41,42,43], but see [26] (there also exist data on binding of e.g. penetratin to 

membranes of liposomes [44]). Here the main role belongs to electrostatic interactions and 

neutralization of opposite charges in the formed complexes of positively charged PTDs and 

negatively charged HSs. In early works, in which a direct interaction of PTD with 

phospholipides of the plasma membrane was supposed, the inverted micelle mechanism was 

suggested [13], see Fig.2. This model gained 

reminiscences in recent work [45] where, in a word, a 

reversing of the membrane (displacement of 

phosphatidylserine to outer surface of the cell 

membrane) resulted from TAT PTD transduction was 

registered. Allusions to possible formation of a 

membrane pore are relatively rare since the latter of a 

needed size presumably would be fatal for the cell. 

 

Fig.2. The peptide, represented as a dimer, recruits 

negatively charged phospholipids (filled circles) and 

induces the formation of an inverted micelle. The 

hydrophilic cavity of the micelle accommodates the 

peptide and, possibly, sequences attached to it that can 

subsequently be released in the cytoplasmic 

compartment [13]. 

 

 Kinetic analysis of the translocation process is hindered by experiment difficulties, that is 

why data on kinetics are scanty and dispersive. The general conclusion can be reduced to a 

relatively fast internalization of peptides detected in the plasma membrane and cytosol 

sometimes even in several minutes, and in 20÷60 min – often in the nuclear membrane/nucleus. 

To the moment, as is justly mentioned by Zorko and Langel [6], it is reasonable to consider a 

phenomenological kinetic scheme like shown in Fig.3 with all its stages being sufficiently 

justified. From their point of view, however, even this scheme is too complicated and needs 

further simplification. Naturally, such a kinetic analysis could yield indicative results only for 

revealing the translocation mechanism. But, astonishingly, even this necessary step is practically 
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absent in the whole body of literature in the field, where attention is paid mostly to qualitative or 

physiological/medical aspects of experimental results. Although it goes without saying that 

targeted application of the phenomenon to drug delivery and clinical therapy will be impossible 

without full comprehension of its physicochemical mechanism. 

 

 
 

Fig.3. Simplified kinetic scheme for CPP internalization. Indices in and out represent the 

portions of CPP or its degradation products inside and outside the cell, respectively; M denotes 

membrane bound CPP; Free means internalized but non-bound CPP (e.g. in cytosol); Bound 

means the fraction of CPP that is interacting with inner cell structures (intracellular membranes, 

proteins, etc); Degradation  products result from proteolytic cleavage of the CPP in the cell; EC 

denotes endocytosis [6]. 

 

3. Planned ways and methods of further investigation 

 

 Resuming the previous section, one can note the following. First works done on cell-

penetrating peptides (CPPs) can be classified as qualitative observation of the peptide uptake by 

cells. Leaving aside the questions of adequate experimental protocols it is possible to postulate 

that the effective uptake of pure CPPs or different cargoes linked to CPPs is now established 

with no doubt. However, apparent uptake of CPPs does not mean that the peptides cross the 

membrane in a “mysterious” way - the uptake can be caused by the well known endocytic 

pathway. There is a significant body of studies that confirm either endocytic internalization or 

direct membrane crossing by CPPs, but they can be hardly considered as absolutely convincing. 

It was postulated recently that several most widely studied CPPs such as penetratin, TAT and 

synthetic oligoarginines are internalized concurrently by both endocytosis and direct membrane 

crossing. It was established that the binding of CPPs to the membranes is non-specific and is 

necessary for both direct crossing and endocytosis. 
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 The endocytic uptake of CPPs is of little interest from the point of view of the current 

project. In this case the peptide resides at the same extracellular compartment and the very 

complex energy-dependent process of vesicle formation facilitates the uptake. In contrast, direct 

translocation of CPPs through the membrane is of great interest. During this process the soluble 

CPP molecule manages to cross the hydrophobic core of the membrane. This requires some 

unknown physical mechanisms making it possible to overcome a prohibitively high energy 

barrier of such translocation. That is why we henceforth focus on direct translocation of CPPs 

through the membrane. 

General physical picture of translocation. In general, the translocation mechanism can 

be divided into several stages regardless of its molecular details. The first stage is the binding of 

the CPP molecule to the membrane surface. This process is energetically favorable. The next 

stage is translocation through the hydrophobic core of the membrane. This stage most likely 

involves the crossing of a substantial energy barrier or several such barriers. After this stage, the 

peptide appears bound on the internal side of the membrane. The last stage is the release of the 

peptide to the cytosol that is again energetically unfavorable because of the binding energy. The 

translocation is spontaneous and does not require external energy sources like ATP, thus the 

whole process can be viewed as a thermo-activated diffusion process. It is possible to introduce 

the translocation coordinate x, which can be roughly associated with the position of the CPP in 

the membrane. A hypothetic energy profile along the translocation coordinate consists of two 

energy minima that correspond to the CPP bound to the external or internal sides of the 

membrane. These minima are divided by the energy barrier that corresponds to the peptide 

location in the hydrophobic core of the membrane. The exact shape of the energy profile in this 

region depends strongly on molecular details of translocation. Several possible variants are 

discussed below. 

 

x 

Extracellular 
solution 

Intracellular 
solution 

Binding on the 
extracellular side 

Binding on the 
intracellular side 

??? 
Membrane core 

 

Fig.4. 

 

As noted above, there are several models of translocation mechanisms in the literature 

(inverted micelle model, carpet model, etc). It is also possible that the single peptide intercalates 
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between the lipids and cross the membrane without forming specific pore-like structures. Let us 

consider these cases in more details. 

Inverted micelle model and carpet model. These imply that the lipid bilayer is 

reorganized in such a way that no contact between the peptide and the hydrophobic lipid tails is 

necessary during translocation. In fact the peptide is coated by the lipid heads. 

The inverted micelle model implies that the peptide molecule induces the formation of a 

local depression on the surface of the membrane. This can be accomplished by strong binding of 

the peptide to the head groups of several lipids. The depression can then close itself into an 

inverted micelle. If this micelle is opened to the internal solution, the peptide is transferred 

through the membrane. However, the feasibility of this mechanism is questionable: the minimal 

size of inverted micelle is quite large, leading to severe distortion of the outer leaflets of the 

bilayer; thus the structure can hardly be stable. 

 The carpet model implies that a number of peptide molecules cover the surface of the 

membrane as a patch of a carpet. Interactions between the peptides and lipids destabilize the 

planar structure of the bilayer and induce the formation of a pore, covered by the lipid molecules 

and peptides. Such a pore does not expose hydrophobic lipid tails to the water environment – it is 

covered by the lipid head groups with bound peptides. 

 The barrel-stave model, in contrast, postulates that the peptides themselves form the pore 

walls. The leaflets of the lipid bilayer in this case are not bent at all. The peptide molecules are 

arranged like a barrel with the hydrophobic outer surface contacting the lipids and the 

hydrophilic inner surface that forms the pore [46]. 

All the mentioned structures should be meta-stable with the lifetime comparable to the 

translocation time. However, formation of such structures is energetically unfavorable because it 

requires a significant perturbation of the bilayer. As a result, the energy profile for these models 

should be like that in Fig.5: 
 

Extracellular 
solution 

Intracellular 
solution 

Binding on the 
extracellular side 

Binding on the 
intracellular side 

Meta-stable 
micelle or pore 

 

Fig.5. 
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Direct translocation. If the peptide intercalates between the hydrophobic tails of the 

lipids and crosses the membrane directly without formation of a specific membrane structure 

then the energy of peptide inside the membrane core should be the highest and the energy profile 

will have a single barrier (Fig.6). 
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Fig.6. 

 

Quantitative parameters of binding. Binding of the CPP to the membrane surface is the 

crucial stage of translocation, presenting in any translocation model. Recent advances in 

experimental techniques allow one to determine the binding properties quantitatively. To our 

knowledge, most of recent quantitative data relate to penetratin or Tat PTD. 

 The binding parameters can be evaluated using the binding isoterms. The only parameters 

which can be directly extracted from the experiment is the membrane-bound peptide to lipid 

molar ratio and apparent dissociation constant of the peptide. Using the model of Langmuir 

adsorption it is possible to extract the binding energy Eb by fitting the binding isoterms. A very 

interesting attempt to extract different components of the binding energy was published recently 

[44]. The authors use the Gouy-Chapman theory that allows them to estimate the electrostatic 

and hydrophobic components of the binding energy. In addition it is possible to extract such 

quantities as the local concentration of the peptide near the membrane, membrane surface charge 

density, membrane surface potential and effective peptide charge. These can be used in 

modeling. They are especially useful because the membrane and peptide charges can be adapted 

to represent not only the outer solution, but also the cell interior, which is necessary to calculate 

the binding to the cytosolic side of the membrane. 

Kinetics of internalization. As noted above, internalization of penetratin and other CPPs 

includes two mechanisms – direct penetration and endocytosis. Zaro and Shen [15] published the 

experimental data that allows one to compare the importance of these pathways quantitatively. 

They measured the time-resolved concentration of the internalized peptide in the vesicular 

fraction and in the cytosol separately. The authors did not calculate any kinetic constants, but 

Extracellular 
solution 

Intracellular 
solution 

Binding on the 
extracellular side 

Binding on the 
intracellular side 

Peptide between 
the lipid tails 



their data are perfectly suited for such an analysis. The only serious limitation is a very small 

number of points on the curves, which can make the fitting ambiguous. Let us consider the time-

dependent concentrations of the peptide in the vesicles, V(t), and in the cytosol, C(t), measurable 

experimentally. The peptide concentration in the outer solution is O (Fig. 7). 

 

O 

C

V

Fig.7. 

 

The processes of direct penetration and vesicle formation can be approximated by single-

stage first-order reactions. One can define the kinetic constants of peptide exchange between the 

three compartments  (cytosol, vesicles and outer solution), kcv, kvc, kco, koc, kvo, kov.  

The following balance equations describe the behavior of the system: 

 

( )

( )
vc oc cv co

cv ov vc vo

C k V k O k k C

V k C k O k k V

= + − +

= + − +

&

&
 

 

This set contains six empirical kinetic constants. The quality of experimental data does 

not allow us to determine all the six constants by direct fitting the curves. That is why further 

simplifications are needed. The endocytosis is an energy-dependent process that can be 

considered as irreversible, thus the vesicles can hardly bring their cargo back to the outer 

solutions and we can set kvo = 0. Next, it is possible to assume that the direct permeation through 

the membrane of the vesicle is essentially the same as through the outer membrane (in reality this 

can be modified by the acidic conditions inside the vesicles). In this case kvc = koc = kin;  kcv = kco 

= kout. The remaining three constants can be determined by fitting the experimental data. 

Determining the energy profile of direct translocation. Analysis of the kinetics allows 

one to obtain reliable quantitative kinetic constants kin and kout that describe the inward and 

outward penetration through the membrane. According to the Kramers theory of thermo-

activated reactions, one can write: 
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where Ein and Eout are the heights of the effective energy barriers of penetration, A is the Kramers 

factor. The effective energy barrier depends on the heights of actual barriers along the 

translocation coordinate. If there are no significantly populated intermediate states on the 

translocation pathway, then the effective barrier corresponds to the rate-determining highest 

barrier along the translocation coordinate.  

The heights of the other energy barriers cannot be extracted using kinetic data only. In 

order to do this the whole body of experimental data should be involved. The following scheme 

(Fig.8) shows which kind of data can be used to estimate the heights of various barriers: 

 

Binding energy 
from the binding 
isoterms 

Ein from 
kinetic data 
analysis 

Eout from 
kinetic data 
analysis 

Binding energy 
corrected for 
cytosol conditions 

 

Fig.8. 

 

Theoretical estimate of the rate-determining energy barrier. The values of Ein and Eout  

that are most probably the rate-determining barriers heights obtained from experimental data 

become invalid if different peptides or different membrane composition are considered. Thus, 

independent theoretical estimates are necessary. One of the possible approaches is direct 

molecular dynamics calculations of the molecular membrane models corresponding to various 

penetration mechanisms. This approach can discriminate between possible mechanisms and 

determine the most probable mechanism for a particular membrane composition, penetrating 

peptide and cargo. However, such calculations require the modeling of quite large membrane 

patches for quite long periods of time that presumes the usage of supercomputers containing not 

less than 100 processors for several months. 

Alternatively, simplified theoretical models can be developed for each penetration 

mechanism. This approach does not require extensive calculations but is error-prone because of a 

number of empirical data incorporated into such models. The lack of quantitative data does not 

allow one to extract the empirical constants with proper accuracy for a wide range of membranes 
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and penetrating peptides. Further progress needs experiments closely coupled with theoretical 

studies and directly targeted on the verification of specific theoretical models. 

General approach and formalism. To construct a quantitative model of the phenomenon 

we will consider the translocation process as a diffusion process with allowance for structural 

properties of the (CPP + cargo) complex, its interaction with the membrane, and the structural 

and dynamical properties of the membrane. Here we outline the possible way of performing this 

task. 

The diffusion process of crossing the membrane by the CPP is conditioned by 

fluctuations in positions of structural components of the CPP and membrane. This implies the 

two most applicable methods of description: Langevin stochastic equations or corresponding 

Fokker-Planck equations for the multidimensional distribution function of system's variables. Let 

 be potential expressed in terms of the CPP's structural variables CPP( )V x ( )1 2, ... Nx x x=x  which 

describe the relative motion of CPP's structural components and motion of the CPP as a whole. 

Next, let  be potential determining the dynamics of structural components ( )MV x

( )1 2, ... My y y=y  of the membrane, and  stands for the interaction between the CPP and 

membrane. Then the Langevin stochastic equations describing both dynamical and diffusive 

processes in the system read:  

( , )W x y

 

( , ) 2 (i
i B ),i

i

dx Uq k Tq
dt x

ξ∂
= − +

∂
x y

i t   ( ) ( ) ( )i j ijt t t tξ ξ δ δ′ ′  = −

( , ) 2 (j
j B ),j

j

dy Uq k Tq
dt y

ξ∂
= − +

∂
x y

{1,... },i Nj t  =     {1,... },j M=  

 

where ( , ) ( ) ( ) ( , )CPP MU V V W= + +x y x y x y  is the total potential energy of the system (CPP + 

M) and  is the friction coefficient for i-th coordinate.  iq

 The corresponding Fokker-Planck equation for the joint distribution function  

reads [47-48]:  

( , , )P tx y

 

1 1

1 ( , ) 1 ( , ) ( , , ) 0
i j

N M

x y
i ji B i i j B j j

U UD D
t x k T x x y k T y y= =

⎧ ⎫⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪− + − +⎢ ⎥⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑x y x y x yP t =  

 

where the diffusion coefficients 
i

B
x

i

k TD
q

=  and 
j

B
y

j

k TD
q

=  relate to structural variables of the 

CPP and membrane, respectively. 
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In both cases, in view of the real number of variables, to directly follow the equations 

above, in either numerical or analytical calculations, is a daunting task. Here extremely helpful in 

necessary simplifications are the methods of adiabatic elimination of fast variables which we 

successfully applied earlier for description of biomolecular systems [49-50]. We also intend 

using the Brownian dynamics methods for the most important slow system's variables (to be 

developed at the next stage of the project). 

Construction of a dynamical model of the CPP is one of the main auxiliary tasks. Such a 

model, on the one hand, should be simple enough and accessible computationally. On the other 

hand, it should reflect specific features of a given CPP that determine its penetration capability. 

Preliminary analysis shows that such a model can be based on the notion of the CPP as a system 

of several blocks mutually interacting by potential . The relative movements of the 

blocks will be identified by degrees of freedom , and the corresponding parameters of the latter 

will determine the object specificity. It is supposed that a block will be relatively large (at a level 

of a residue or larger) to decrease the number of degrees of freedom to reasonable extent but 

without loss of the CPP specificity. We consider the use of the coarse-grained knowledge based 

potentials (see e.g. [

CPP( )V x

x

511]) for constructing  as acceptable in modeling. CPP( )V x

Not less important is the way of modeling the membrane. Here we also intend holding the 

method of reasonable sufficiency. If the coarse-grained model is exploited in modeling the CPP, 

then the continuum approximation will be sufficient for modeling the membrane since tracing 

the behaviour of individual lipid molecules is not necessary. The following model of the 

membrane can be suggested: the hydrophobic central part of the membrane (tails of lipid 

molecules) is represented by an infinite homogeneous and isotropic dielectric layer of finite 

thickness  with a small dielectric constant (cored 2 3ε = ÷ ) taken from experiment. This layer is 

covered on both sides with two dielectric layers of thickness  that correspond to the 

domains of polar heads of lipid molecules. These latter layers have its dielectric constant as 

typical for partially ordered polar medium (50

polard

80ε< < ). The polar layers possess bulk and/or 

surface charges representing the charges of real lipid heads, The charge distribution can be rather 

inhomogeneous in the direction normal to the bilayer but isotropic in its plane. Such a model 

allows us to calculate the potential profiles for each type of penetrating particles (structural 

blocks inside the peptides). It is possible to vary the lipid composition of the membrane and 

asymmetry of the internal and external monolayers by means of varying the dielectric properties 

and charge distributions of the polar layers. At the same time the model admits sufficiently 

simple ways of taking into account the interaction of different CPPs with the membrane. 

The simplest can be carried out within the constant potential approximation, 

( ) ( , )Wϑ = 0x x y . Then the positions of the membrane structural groups are supposed to be fixed 
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at given mean values 0y , and ( )ϑ x  determines the interaction of each of movable elements of 

the CPP with the membrane. In this case the problem is reduced to the study of the over-crawling 

of a non-rigid object of the given structure containing components of different mobility through a 

rigid pore (cf. e.g. [52-54]). More sophisticated description allows for self-consistent dynamics 

of the (CPP + membrane) system. It is the version of the theory that could turn out to be most 

suitable for describing the striking features of protein transduction. 
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Summary 

 

 During the last decade the protein transduction domains or, more generally, cell-

penetrating peptides (CPPs) are being of special interest as a promising non-invasive means 

of delivery of macromolecular components and whole macromolecules into cells and cellular 

nuclei. Although extensive experimental data have been reported in the literature, they are 

highly diverse and often contradictory, starting from the very possibility of CPPs’ 

transduction and especially the translocation mechanisms. We review the current state of the 

art in the field and outline possible physical approaches to the modeling and quantitative 

analysis of the phenomenon of transduction. 
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EOARD Partner Project 211 – Deliverable 2 

 

1. Introduction 

 

 As was noted in Deliverable 1, from the available amount of data it is hard to distinguish 

more or less special common features in the primary/secondary structure of the cell-penetrating 

peptides (CPPs) except the fact that all of them are positively charged. This suggests that the 

modeling of the CPP at the specific structure level can be preceded by a consideration in which 

the CPP is represented by a simple dielectrical stereoobject (sphere/ellipsoid, cylinder, etc) with 

some distribution of its positive charge. The electrostatic interaction with the negatively charged 

surface of the lipid bilayer membrane will naturally course approaching of the CPP and 

membrane, accompanied with considerable changes in the structure and geometry of the latter, 

up to formation of some complex whose character will allow us to evaluate the transduction 

possibility. 

Obviously, in such problem formulation the leading part is played by the method of 

modeling of the membrane structure. This can be done within the mechanical continuous models 

by the methods of thin film elasticity theory, etc (see e.g. [1]). The main parameters entering 

these models are material constants like coefficients of surface tension, bending elasticity, 

spontaneous curvature, so on. Although such approaches made a good showing in some 

problems of the rearrangements of lipid aggregates (e.g. bilayer-micelle transitions), it should be 

noted that rigorously they are applicable for describing small membrane deformations only. In 

the presence of domains of essentially different lipid packing they can produce, at their best, only 

qualitatively correct results. 

 Another possibility is to use a semi-microscopic approach based on the so-called 

"molecular lipid models" originating from works of Israelachvili et al on lipid self-assembly (see 

e.g. [2-4] and "the opposing forces model" (OFM) proposed therein); in recent years it is 

intensively developed, in particular, by Ben-Shaul and co-authors [5-9]. In this approach the 

lipids are treated as some stereoobjects (cones, cylinders, etc) able in certain limits to change 

their shape, depending on the type of packing in a lipid aggregate, without changing their volume 

(fluid model of constant density). Within such models all the main forces determining the 

aggregate shape can be represented by a small number of relatively simple contributions into the 

free energy per lipid molecule. 

 Thus, the modeling strategy at the present stage looks as follows. The free energy of the 

system (peptide + membrane) is minimized by variational methods. With this, both the free 

energy profile and system geometry (changing as the peptide approaches to the lipid bilayer, up 

to critical geometrical changes indicating the possibility of transduction) can be found. Typical 



realistic values of parameters of the bilayer representing an artificial lipid membrane, as well as 

those of the peptide, are more or less known. The influence of the electrolyte surrounding the 

membrane and peptide can be considered in a simple Debye model or in a more detailed way 

involving the Poisson-Boltzmann equation [7, 10-12]. 

 Below we briefly recall the necessary knowledge of the lipid membranes and the 

opposing forces model and then expound our modernization of this model and the method of 

calculation of the free energy which will be exploited at the next stage of the project. 

 

2. Lipid aggregates and the extended opposing forces model 

 

 When trying to create molecular models of lipid aggregates self-assembly it has turned 

out that rather good results (although initially at a qualitative level of prediction of possible 

structures only) could be obtained within a relatively rough phenomenological approach using 

mainly the lipid geometrical properties only. For example, one can compose the dimensionless 

packing parameter 0/ cp a lυ=  whose value immediately indicates the type of a possible lipid 

aggregate. 

 

Fig.1. The surface and bulk intermolecular interactions that define the dimensionless packing 

parameter, or average molecular "shape factor" p of amphiphiles [4]. 

 

 Here υ  is the volume per lipid molecule,  is the maximum possible extension of the 

flexible hydrocarbon chains, and  is the "optimum" (i.e. corresponding to minimum free 

energy) headgroup area at the hydrocarbon-water interface, see Fig.1. There exists the so-called 

"generic sequence" of the main amphiphilic structures and corresponding types of the elementary 

lipid volumes appearing with 

cl

0a

p growing: 

 2



 

Oil in  Water 

Water  in Oil 

 

 

p       1/3  1/2          1       2   3 

         (spherical)    (cylinder)    (bilayer)  inverse        inverse 
           micelles       hexagon.   lamellae hexagon.     micelles 
 

with numerous more complex intermediate structures [4]. 

 Stability of this or that structure is determined by a subtle balance of the forces on the 

bilayer surface and in the hydrophobic core. Nevertheless, to a rather good extent, this balance 

can be represented by the following additive contributions into the free energy per lipid, f . The 

simplest is the classical expression [2,3] 

 

s hf f f= + ,           (1) 

 

describing the interplay of the two opposing tendencies: to minimize the hydrocarbon-water 

interface surface due to hydrophobic interactions ( sf ) and to drive the hydrophilic headgroups to 

move away from each other, maximizing their contact with water ( hf ). In the opposing forces 

model the contribution sf  is expressed through the surface tension coefficient γ : 

 

sf aγ= ,           (2) 

 

where a is the area per lipid headgroup, and hf  reads 

 

h
Bf
a

= ,           (3) 

 

being some kind of treating the headgroup interaction within a two-dimensional van der Waals 

equation of state.1 The competition of these two forces results in the existence of the so-called 

                                                 
1 The repulsion expressed by Eq. (3) can reflect not only the elecrostatic interaction of charged 

headgroups but also other effects like those of excluded volume, etc. 
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"optimum" headgroup area  that can be easily found by minimization of 0a f  (1): 0 /a B γ= , 

so that for small deviations of  from  Eq.(1) can be reduced to a 0a

 

( 2
0

0
( ) 2 )0f a a a a

a
γγ= + − .         (4) 

 

 The simplest OFM (1-4) is applicable, rigorously speaking, to lipid self-assembly into 

uniformly packed aggregates. In more complex cases it should be taken into account that, first, 

the mentioned opposing forces act at somewhat different surfaces (see Fig.1). Accordingly, there 

is a difference between the headgroup area at the hydrocarbon-water interface  and that related 

to the maximum headgroups interaction surface , with the distance  between these surfaces, 

so that 

ia

ha hl

i
h

Bf a
a

γ= + .           (5) 

 

 The distinction between ,  and  contributes, in particular, to the lipid layer 

curvature effects. Besides, there exists the conformational contribution of the lipid tails into the 

free energy, 

ia ha 0a

cf . Given non-compressibility (constant volume per lipid υ ) and uniform density of 

"lipid liquid" in the hydrophobic core, this contribution can be often written as ( )2
c cf b lτ= −  

where b  is the average length of the lipid chain (detailed calculations of the chain packing in the 

statistical mean-field theory confirm the validity of such approximation [9,13]). Therefore, the 

extended OFM is represented by the expression 

 

( 2)s h c i c
h

Bf f f f a b l
a

γ τ= + + ≡ + + − .       (6) 

 

 As shown in e.g. works [6,8], it is quite applicable to the description of rather complex 

non-uniform lipid aggregates and lipid-protein interactions. 

 Typical values of the constants entering Eq.(6) are rather well-defined in the literature 

(see e.g. [4,8,14]). Thus, for a saturated hydrocarbon chain max (0.154 0.126 )cl l n≤ = + nm, and 

3(27.4 26.9 ) 10nυ −= + ⋅ nm3, where  is the fully extended molecular length of the lipid chain 

containing  alkyl groups. Some of these values used in calculations of amphiphilic 

hydrocarbon systems in water are listed in Table 1. 

maxl

n
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Table 1

Surface tension of the hydrocarbon-water 

interface γ  

20.12 / ÅBk T , or 50mJ/m2 at K 300T =

Optimal headgroup area  0a 19 250 10 m−⋅  

Lipid volume υ  (a lipid with two C18 chains)  27 310 m−  

Critical chain length  ( ) cl 12 18n = ÷ 10 20Å÷  

Packing parameter 0/ cp a lυ=  ( ) 18n = 0.8 

Lipid tail compressibility τ  ( ) 12 16n = ÷ 20.11 0.08 / ÅBk T÷  

 

3. Modification of the extended OFM 

 

 For the process under study that suggests considerable changes in membrane geometry 

we modify the approach described in work [8] and applied there to the description of the 

structure of the edge of a planar lipid bilayer and calculation of the corresponding line tension. 

Precisely, in the approximation used below we assume that each lipid monolayer of the 

membrane is represented by a layer of directed molecules of two-dimensional liquid (smectic 

liquid crystal). The length and tilt of the molecule director determine the monolayer thickness at 

a given point. So far, we consider only one type of lipids composing the monolayers and neglect 

the interaction between the latter.  The ends of the lipid tails of both monolayers are situated on 

the membrane "midline". 

 Fig.2 shows a schematic model of such a bilayer membrane. According to supposed 

cylindrical symmetry of the problem, we imply the cylindrical reference frame ( , , )R zϕ  with the 

peptide situated on the symmetry axis . In this frame the position of a point is given by radius-

vector  where 

z

cos siniR jR kzρ ϕ ϕ= + +
rr rr , ,i j k

rr r
 are the orts of the cartesian frame ( , , )x y z : 

 
cos
sin

,

x R
y R
z z

ϕ
ϕ

=
=
=

 

 

where 2 2R x y= +  is the distance between the point and -axis, and z ϕ  is the angle between the 

projection of the  radius-vector ρr  onto plane ( ),x y  and x -axis. 
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z 
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Fig.2. 

 

We now need a proper method of description of membrane geometry changing as the 

peptide approaches the membrane. As distinct from that used in work [8], we take into account 

(i) cylindrical symmetry of the system; (ii) nonequivalence of the monolayers and complex shape 

of the interlayer surface; (iii) the presence of the peptide of a given geometry and charge 

distribution. 

 3.1. Geometrical description. As a vector that defines the average position of the inner 

end of a lipid molecule we take radius-vector ρ
r

 of a point on the membrane midline (in fact, the 

set of such points defines the mentioned midline). In the outer ("upper") monolayer, the average 

position of the molecule with its inner end at point ρ
r

 is denoted as ( )b ρ
r r

 and the position of the 

outer end of the hydrocarbon tail (near the headgroup) – as ( ) ( )r bρ ρ= +
r
ρ

r r rr . Finally, the 

position of the headgroup center is ( )( ) 1 /hb lρ + b
r r , where  is the distance between the end of 

vector  and the center of its headgroup. In the inner ("lower") monolayer the corresponding 

vectors are 

hl

b
r

( )q ρ
rr , ( ) ( )t q qρ ρ= +

r rr r r , and ( )( ) 1 /hq lρ + qrr , respectively (see Fig.2). Of course, it is 

supposed that, in view of the system symmetry, any physical value is ϕ -independent, 

R

ρ
r

 

 

θ
b
r

( )z R

q
r

φ
r
r

t
rz 

dϕ  

ϕ

x



( , , ) ( , )A R z A R zϕ = , so that the problem can be reduced to a two-dimensional one in plane 

( ),R z . 

Suppose that the interlayer midline is described by function ( ).z z R=  Let us parametrize 

all the necessary functions with respect to R  as a parameter. The two-dimensional radius-vector 

ρr  is ( ) ( )R eR kz Rρ ρ≡ = +
rr r r  (where / cos sine R R i jϕ ϕ= = +

r r rr ), and ( )( ) ( )d R e z R k dRρ ′= +
rr r . 

Here the prime denotes the derivative with respect to R . Consequently, 

 where ( ) ( ) ( )R zb b R eb R kb R≡ = +
r r rr sinRb b θ= , coszb b θ=  are the component of vector ( )b R

r
 

and θ  is the angle between vector  and ( )b R
r

z -axis (tilt). Then   

 

( ) ( ) ( ) ( ) ( )R zr R R b R R b e z b kρ= + = + + +
r rrr r , 

  ( ) (1 ) ( )R zdr R b e z b k dR⎡ ⎤′ ′ ′= + + +⎣ ⎦
rr r

 

For the lipids whose inner tails fall into the interval ( ),R R dR+ , the infinitesimal length 

of the line of the hydrocarbon interface in plane ( ),R z  reads: 

 

2 2(1 ) ( )R zdr dR b z b′ ′ ′= + + +
r  

 

in the upper layer and 

 

2 2(1 ) ( )R zdt dR q z q′ ′ ′= + + +
r

 

 

in the lower layer. Then the infinitesimal area on the upper hydrocarbon interface is 

 
( ) ( ) ( )u
i R uda R b d dr s R d dRϕ ϕ= + =

r ,       (7) 

 

where 

 

2( ) ( ) (1 ) ( )u R Rs R R b b z b 2
z′ ′ ′= + + + + ,       (8) 

 

and on the lower interface 
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( ) ( ) ( )l
i R lda R q d dt s R d dRϕ ϕ= + =

r
,  

 

where 

 

( ) 2 2( ) (1 ) ( )l R Rs R R q q z qz′ ′ ′= + + + + . 

 

For corresponding infinitesimal areas on the upper and lower headgroup surfaces we 

have, respectively: 

 
( ) ( ) ( ; )u u
h ida da R b l= + h h+, .     (9) ( ) ( ) ( ; )l l

h ida da R q l=

 

 Proceed to the infinitesimal volume of the membrane. This volume occupies a cylindrical 

sector resulted from rotation of the above-considered strip in plane ( ),R z  by angle dϕ  around 

-axis. Similarly to work [8], introduce the reference frame z

 

( )

( ),
R

Z

R R b R

z z b R
ξ

ξ

ξ

ξ

= +

= +
 

 

where ( , )R zξ ξ  are the coordinates of the points on the director with its inner end localized at 

( , )R z ; variable ξ  takes its values in the interval ( )0,1  (see Fig.3). 

For the upper monolayer, the infinitesimal volume ( )udVξ  related to dξ , as is clear from 

Fig.3, can be written as ( )u
zdV R d b d drξ ξ ξϕ ξ= ⋅ ⋅

r , where rξ bρ ξ= +
rrr , so that 

. Therefore, ( ) ( )1 R zdr b e z b k dRξ ξ⎡ ⎤′ ′ ′= + + +⎣ ⎦
rr r

 

( ) ( ) ( )

( )

1
2 2 2 2

0

1
2

2 1 0
0

2 1u z R R z R z

z R

dV b d dR d R b b b b z b z

b d dR d R b A A A

ϕ ξ ξ ξ ξ

ϕ ξ ξ ξ ξ

′ ′ ′ ′ ′ ′= + + + + +

= + + +

∫

∫

+

z

 

 

where , , and 2
0 1A z′= + ( )1 2 RA b z b′ ′ ′= + 2 2

2 R zA b b′ ′= + . 

Introduce the designations: 
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( )1
2 1 2 1 0 1 02

2 1 0
20

2
2 1 2 2 1 02 0 1

3/ 2
2 1 2 0

2
( )

4

2 2 ( )4 ln ,
8 2

A A A A A A A
I R d A A A

A

A A A A A AA A A
A A A A

ξ ξ ξ
+ + + −

= + + =

+ + + +−
+

+

∫
 

( )3 31
2 1 0 02 1

1 2 1 0
2 20

( ) ( )
3 2

A A A A AI R d A A A I R
A A

ξ ξ ξ ξ
+ + −

= ⋅ + + = −∫ . 

 

 

( )z R  

bξ  

R  

ξbd

Rξ  

)(ξda

ϕd

θ

z  

R 

( )b R

 

 

 

 

 

z 

 

 

 

 

 

 

 

 

 

Fig.3. 

 

Then 

 

( )3 3
2 1 0 01

2 2

( ) ( )
2 3u z R R u

A A A AAdV b d dR R b I R b v R d dR
A A

ϕ ϕ
⎡ ⎤+ + −⎛ ⎞⎢ ⎥= − + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, 

 

where 

 

( )3 3
2 1 0 01

2 2

( ) ( )
2 3u z R R

A A A AAv R b R b I R b
A A

⎡ ⎤+ + −⎛ ⎞⎢ ⎥= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    (10) 
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is the density of the volume with respect to parameter R . Similar expressions for the lower 

monolayer can be written by the replacements . ,b q u l→ →

 3.2. Free energy of the bilayer. According to Eq.(6), for the upper monolayer 

 

[ ]2( ) ( ) ( )
( )u i

h

B
cf R a R b R l

a R
γ τ= + + − , 

 

where ( )f R  is the free energy per lipid whose inner tail falls into the interval ( , )R R dR+ . Then 

the quantity ( )f R
υ

 is the free energy density (as mentioned above, it is supposed that 

constυ = ). Therefore, the free energy of this layer reads: 

 
2

( )

0 0 0

1 1 2( ) ( ) ( ) ( ) ( )
L L

u
M u u u u u uF f R dV d f R v R dR f R v R dR

π πϕ
υ υ υ

= = =∫ ∫ ∫ ∫ . 

 

To specify ( )uf R  in this formula, we need to find the expressions for quantities  and 

. For this, we write 

( )u
ha

( )u
ia

 

( ) ( ) ( ) ( )

( ) ( )

R R
u

i u u
R

R R

u u
R

a R s R d dR s R R

v R d dR v R R

ϕ ϕ

ϕ

ϕ ϕ

ϕ

ϕ ϕ

υ ϕ ϕ

+Δ +Δ

+Δ +Δ

= ≈

= ≈ Δ

∫ ∫

∫ ∫

Δ Δ

Δ

      (11) 

 

that is approximately valid if minR RΔ << , where Rmin is the minimal local curvature radius of the 

monolayer in the course of membrane deformation. Note that for a spherical micelle or semi-

toroidal edge this condition does not hold rigorously. In such cases min ~R b , being 10÷20 Å for 

real lipids. At the same time the average inter-lipid distance is also ~10 Å. Then more accurate 

calculations of the area per lipid, including integration along the membrane midline, should be 

performed. 

If, nevertheless, the approximation (11) is valid, then, obviously, 

 

( ) ( ; )( )
( )

u u
i

u

s R ba R
v R

υ=  and ( ) ( ; )( )
( )

u u h
h

u

s R b la R
v R

υ+
= , 
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 11

)where ( ) ( ) ( ) (2 2; 1 / 1u h R h Rs R b l R b l b b z bz′ ′ ′⎡ ⎤+ = + + + + +⎣ ⎦ . 

 

Consequently, the free energy per lipid is 

 

[ ]2( ; ) ( )( ) ( )
( ) ( ; )

u u
u c

u u h

s R b v RBf R b
v R s R b l

γυ τ
υ

= + ⋅ +
+

R l− , 

 

and the total free energy of the upper monolayer takes the form 

 

[ ]
2

2( )
2

0

( )1 ( ) 2 ( , ) ( ) ( )
( ; )

L
u u

M u u u u c
u h

v RBF f R dV s R b v R b R l
s R b l

τπ γ
υ υ υ

⎧ ⎫
= = + ⋅ + −⎨ ⎬+⎩ ⎭
∫ ∫ dR . (12) 

 

For a planar monolayer the free energy per lipid reads: 

 

( )2
0 ,c

Bf a b l ab
a

γ τ= + + − =υ

u
u idV bRdRd da RdRd

        (13) 

 

(here the index u  is omitted in view of full symmetry of a planar bilayer). Also, it is obvious that 
( ),ϕ ϕ= = , so that ( )uv R bR=  and ( )us R R= . In this case 0f  does not 

depend on R , and the free energy of a planar monolayer reads: 

 

(0) 2
0

0

2 L

M
bF f bRdR L f Nfπ π

υ υ
= =∫ 0 0=        (14) 

 

where  is the given number of lipids. The value  (or ) can be found from minimization of N 0b 0a

0f  (13) that results in the cubic following equation: 

 

( )3 2 2ca B l aγ τυ τυ− − − =2 0 . `       (15) 

 

Obviously, 0 0/ /L N b Naυ π π= = . 

 Introduce dimensionless quantities, with  serving as a length unit: 0b

 
2 3
0 0

2
0

; ;c
c

l b bl B B
b

.τ τ
γυγυ

= = =  



 

 Then the minimum free energy per lipid in the planar monolayer (at ) is N const=

 

( )2(min)
0

0
1 1 cf B

b
lυγ τ⎡ ⎤= + + −⎢ ⎥⎣ ⎦

. 

 

 Parameters , , cB lτ , as is seen from Eq.(15) at 0a a= , are not independent of each other, 

precisely, 

 

1 1
2 1 c

B
l

τ −
= ⋅

−
, 

 

so that 

 

( )( )(min)
0

0

11 1 1
2 cf B B l

b
υγ ⎡= + + − −⎢⎣ ⎦

⎤
⎥ .       (16) 

 

 Subtracting now (14) with 0f  as (16) from (12) yields the free energy of the upper 

monolayer deformation ( )u
MFΔ . It could be also written in dimensionless quantities, introducing 

2
0 0/ , / , / 0R R b L L b a a b= = =  etc; then 0( ) ( ) / ,u us R s R b=  2

0( ) ( ) /u uv R v R b=  where ( )us R  are 

given by Eqs.(8),(10)  with all the quantities are supplied with the bar. Finally, 

 

( ) ( )

2
( )

0

2 2

( )2 ( ; )
( ; )

1 1 ( ) ( ) 1
2 1

L
u u

M u
u h

c u c
c

v RF dR s R b R B
s R b l

B b R l v R l R
l

πγ
⎧ ⎡ ⎤⎪Δ = − + −⎨ ⎢ ⎥+⎪ ⎣ ⎦⎩

⎫− ⎡ ⎤+ ⋅ − − − ⎬⎢ ⎥⎣ ⎦− ⎭

∫ R
 

 

 Naturally, the expression for the free energy of the lower monolayer can be written with 

replacing . ,u l b q→ →

 

4. Contribution of the CPP electrostatic potential 

 

The local charge density on the maximum headgroups interaction surface of the upper 

monolayer can be written as 
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( )( )
( ) ( ; ) ( ; )

u
u

h i h u h

Zv RZ ZR
a R a R b l s R b l

σ
υ

= = =
+ +

, 

 

where Z  is the total headgroup charge, and the other quantities are found above, see (7-10). 

Then the electrostatic part of the free energy originated from the interaction between the peptide 

and the upper monolayer reads: 

 

int
0

( ) ( ; )2 ( )
( ; ) ( ; )

u u

L
i u

u h u
i h u hS S

Z da R s R bZF da v R
a R b l s R b l

πσ
υ

Ψ Ψ
= Ψ = =

+ +∫ ∫ ∫ dR ,   (13) 

 

where  is the electric potential at point ( )rΨ
r rr . 

The real distribution of the electric field created by the peptide near the membrane 

depends on polarizability and composition of the solvent. The usual tools in allowing for these 

factors are mean-field theories, like based on the Poisson-Boltzmann equation or its simplest 

version (Debye screening). At the initial stage of calculations we restrict ourselves with the 

latter. 

 While potential  ensures attraction between the peptide and charged membrane 

surface, the peptide surface is supposed impermeably rigid. We will model the peptide by a two-

axis ellipsoid resulted from rotation of the ellipse with axes 

( )rΨ
r

xyd dR≡  and  around zd z -axis 

(with the ellipse center located at point pz  and the ellipse axis  running along -axis; for 

definiteness, ). Then the ellipsoid surface is composed of points (

zd z

zd d≥ R , ,x y z ) satisfying the 

equation 

 
22 2

2 2

( )
1

R

p

z

z zx y
d d

−+
+ = . 

 

With the relationships ( )2, 1z Rd d dε ε= = − d , where 2
R zd d d= + 2  is the half–

distance between the ellipse foci and 
2

z

z R

d
d d

ε =
− 2

 is the ellipse elongation parameter, the 

ellipse surface equation can be re-written as 

 
22 2

2
2 2

( )
1

pz zx y d
ε ε

−+
+ =

−
. 
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We will assume that there are  elementary charges localized at points 

 

pn

n n n nQ X i Y j Z k= + +
rr r r ( )1,2,.., pn = n  inside the ellipsoid. Then the electric potential at point 

x y zr r i r j r k= + +
rr rr , created by these charges, is 1( ) exp n

n Dn

r R
r

r R λ

⎛ ⎞−
⎜ ⎟Ψ = −
⎜ ⎟− ⎝ ⎠

∑
rr

r
rr  where Dλ  is 

the corresponding Debye length. 

To preserve cylindrical symmetry, we suppose that the peptide charges are uniformly 

situated in the interval { }0,0, p pz d z z d+ ≥ ≥ −  between the ellipse foci (Fig.4). Then 

, and 0n nX Y= =
2 ( 1

1n p
p

dZ z d n
n

= − + −
−

) . Therefore, 

 

2 2

2 2
1

1exp 2
( ) ( , )

2

p z n nn
D

z
n z n n

r r Z Z
r r r

r r Z Z

λ

=

⎡ ⎤
− − +⎢ ⎥
⎣ ⎦Ψ = Ψ =

− +
∑r  

 

where . ( ) ( ) ( )z zr R z R b R= +

For the membrane surface, obviously 

 

[ ] [ ] [ ]
[ ] [ ]

[ ]2 2 2 2

( ) ( ) cos ( ) sin ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 2 ( ) ( ) ( ) .

R R

R z

z R z

r R i R b R j R b R k z R b R

e R b R k z R b R

r R R b R z R b Rb R z R b R

ϕ ϕ= + + + + +

= + + +

= + + + + +

z

rr rr

rr  

 

The proposed way of defining the peptide shape and charge distribution allows us to vary 

the shape from spherical ( ) to cylindrical (0d = 1ε = ) as well as the distance ( 1)d ε −  from the 

last charge (located in the focus) to the lowest ellipse point { }0,0, p zz d− . This is helpful in 

modeling real peptides of different size, shape and charge. 
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Fig.4. 

 

5. Methods of computation  

 

We now need to obtain the system free energy profile as the peptide approaches the 

membrane. This task will be done by minimization of the free energy functional 

 with respect to five functions z(R), bint ( ( ), ( ), ( ), ( ), ( ))M R z RF F F z R b R b R q R q RΔ + = z R(R), bz(R), 

qR(R), and qz(R) for every fixed position of the peptide. Obviously, this cannot be done 

analytically, and the following standard numerical will be exploited. 

The independent variable R is discretized as ( )iR , Ni K1,0= , , ( ) 0iR = ( )NR L= . The 

boundary distance  is taken large enough to ensure that all functions at point L NR  are the same 

as those of the unperturbed membrane. This results in the following set of boundary conditions: 

 

( ) ( ) 0z L z L′= = , , ( ) ( ) ( ) 0R R zb L b L b L′ ′= = = 0( )zb L b= , 

( ) ( ) ( ) 0R R zq L q L q L′ ′= = = , , 0( )zq L b= −

 

where the quantities with zero subscript are related to the unperturbed membrane. The peptide 

center is located at point (0, )pz . All the functions characterizing the membrane are properly 

discretized, too. The i-th discrete part of the membrane is characterized by five parameters 

, and , with each being varied independently. The total number of variable , , ,i Ri zi Riz b b q ziq

R 

2d 

zp 
y 

x



 16

5 5

)N

F

parameters is , and functional F is transformed to the function of  variables, 

. There are several possible 

computational approaches to this multiparametric optimization problem. We will consider two of 

them, most robust and easy to implement. 

5N + 5N +
(0) ( ) (0) ( ) (0) ( ) (0) ( ) (0) ( )( , , , ,N N N N

R R z z R R z zF z z b b b b q q q qK K K K K

1. The approach of local variations (also known as unconditional multi-parametric 

optimization). Each of five parameters are changed by small quantity  at particular point i 

and the new value  of the functional is computed. If 

±Δ

newF newF < , then the change of the 

parameter is accepted, if not – rejected. The procedure is applied subsequently to all N points 

until a given convergence criterion is satisfied. The method is simple in implementation but very 

demanding computationally (although several techniques are known to improve the 

performance). The boundary conditions are easy to implement in this method. 

2. The approach of non-local variations (shape variations). All discretized functions are 

approximated by finite sets of  cosines K

( ) ( ) ( ) ( )

0

cos( )
K

i i j

j

z z Rω
=

= ∑ % i
R R

j

b b Rω
=

= ∑ % ( ) ( ) ( ) ( )

0

cos( )
K

i j j i
z z

j

b b Rω
=

= ∑ %

R R
j

q q Rω
=

= ∑ % ( ) ( ) ( ) ( )

0

cos( )
K

i j j i
z z

j

q q Rω
=

= ∑ %

, , , ( ) ( ) ( ) ( )

0

cos( )
K

i i j i

( ) ( ) ( ) ( )

0

cos( )
K

i j j i , , 

 

where iω  is a set of "harmonics" identical for all parameters; ( ) ( ) ( ) ( ) ( ), , , ,j j j j
R R z zz b q b q% %%% j%

)K

z

 are the 

amplitudes, . As a result,  becomes a function of 5  amplitudes 

. The amplitudes are varied to 

minimize . The number of harmonics can be quite small. The reason is that the radius of 

curvature of the membrane is limited – it is larger than  but smaller than , thus few 

harmonics can be enough to approximate any possible smooth shape of the membrane. This 

means that the number of variables is reduced and the computational intensity is substantially 

lower than for the scheme of local variations. In addition, all derivatives are expressed 

analytically, and this also results in substantial speed-up of calculations. 

(0) 0ω = F 5N +

(0) ( ) (0) ( ) (0) ( ) (0) ( ) (0) ( )( , , , ,K K K K
R R z z R R z zF z z b b b b q q q q% % % % % % % %% %K K K K K

F

0b L

The boundary conditions are transformed to 

 

( ) ( ) (0)

0

( ) ( ) ( )

0

cos( )

sin( ) 0

K
j j

j

K
j j j

j

z L

z L

ϖ

ω ϖ

=

=

⎧ =⎪
⎪
⎪⎪ =⎨
⎪
⎪
⎪
⎪⎩

∑

∑

%

%

K

K

 



 

The remaining eight conditions designated by dots can be written by changing  to 

, ,  and . 

( )jz%
( )j

Rb% ( )j
Rq% ( )j

zb% ( )j
zq%

It is obvious that the amplitudes can not be varied independently without violating the 

boundary conditions. At least two amplitudes should be changed consistently at each step. This 

variational scheme is much more complicated in implementation as compared with that of local 

variations. The usage of shape variations is justified if the computational burden of local 

variations scheme becomes intolerable. 
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Summary 

 

 The strategy of analytical and numerical modeling of the interaction of a cell-penetrating 

peptide with a lipid bilayer membrane is determined and substantiated. As a basis, we choose the 

extended opposing forces model which we essentially modify in order to allow for considerable 

membrane geometry changes induced by the peptide. The membrane is considered as a lipid 

fluid, with lipids length and orientation depending on their positions. Besides, the possibility of 

deformation of the membrane as a whole due to the bending of the interlayer surface is also 

taken into consideration. To take account for the disturbing influence of the peptide we propose a 

simple three-parameter model of the latter, allowing us to vary both peptide geometry (that can 

be decisive at close contact with the membrane) and its electrostatic field. 

 The proposed formalism is aimed at determination of the system free energy profile and 

the character of membrane deformation with the peptide approaching. This will be done by 

minimization of the constructed free energy functional of five independent functions defining the 

equilibrium membrane configuration in a convenient and visual way. Several minimization 

procedures will be tested to find the optimal one. 

 We suppose that the free energy profile to be found will allow us to determine the optimal 

characteristics of the peptide in regard to its transduction abilities. This will also make it possible 

to construct a diffusion kinetic model of the transduction process and to evaluate its kinetic 

parameters. 
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EOARD Partner Project 211 – Deliverable 3 

 

1. Introduction 

 

 Previously (see Deliverables 1,2) we have analyzed the known theoretical 

approaches to studying the dependence of the shape of bilayer phospholipid membranes on 

various disturbing factors in order to choose the most promising method of the theoretical 

investigation of the CPP transduction process. As a result, we have chosen a version of the 

phenomenological opposing forces model (OFM) [1-3] having much in common with the model 

of oriented liquid. The main advantage of this model consists in its comparative simplicity and 

supposed ability to treat considerable deformations of the bilayer. True, in recent papers (see e.g. 

[4]) the OFM was used mainly for description of small perturbations of a given membrane 

geometry. Needless to say, studying large (even if local) changes of the membrane shape, one 

implies that the model exploited is able to describe the initial unperturbed membrane 

configuration. At the same time such a model must be instructive enough at describing the 

emergence of rather complex membrane structures of nontrivial geometry, up to formation of 

pores/channels for CPPs. That is why in Delivery 2 we have presented a special mathematical 

formalism, aimed directly at such problems, within which the bilayer lipid membrane 

configurations are described with five independent functions determining both the average 

characteristics of orientation and deformation of the lipids in each monolayer as well as bends of 

the membrane as a whole. 

The present stage of the project is devoted to creating the programming methods of 

realization of the model developed in order to calculate and simulate the membrane 

configurations at various values of the model parameters, for both the unperturbed membrane 

and that interacting with the CPP. At this stage the problem consists in numerical minimization 

of the system free energy functional, with the membrane configuration given by the five 

mentioned functions resulted from the minimization procedure. 

To this end, we go two different ways. The first is to apply the known Euler-Lagrange 

formalism. This leads to the necessity of numerically solving the set of ten nonlinear first-order 

ODE for the five mentioned functions and their first derivatives. The second consists in direct 

variations of the lipid arrangement in the membrane. 

 

2. Minimization of the membrane free energy functional by the Euler-Lagrange method 

 

According to the results presented in Deliverable 2, within the OFM model the free 

energy of a membrane of arbitrary cylindric-symmetrical configuration reads 



 

 2

)(
0

2 ; , , , , , , , , ,
L

M R z R z R z RF R z z b b b b q q q q dRπγ ′ ′ ′ ′ ′= ∫L       (1) 

 

where the Lagrange function of the membrane 

 

( ) ( )
( )

, , , , , , , , , , , , , , , ,

, , , , , ,
R R z z R R z z R R z z

R R z z

R z z b b b b q q q q R z z b b b b

R z z q q q q

′ ′ ′ ′ ′ ′ ′= ′

′ ′ ′+
u

l

L L

L
    (2) 

 

consists of the two terms related to the "upper" (u) and "lower" (l) monolayer. Functions 

 represent the corresponding components of vector ( ), ( )R zb R b R b
r

, determining the length and 

orientation of a lipid at point R  in the upper monolayer (see Fig.2 of Delivery 2), and 

 are their derivatives with respect to ( ), ( )R zb R b R′ ′ R ;  and  are the 

analogues for the lower monolayer. Lastly, functions 

( ), ( )R zq R q R ( ), ( )Rq R q R′ ′

( ), ( )z R z R′  determine the shape of the 

midline between the monolayers. 

 Under cylindric symmetry, for e.g. the upper monolayer we have obtained: 

 

( ) ( ) ( ) ( )
2

2( ) 1 1, , , , , , ; ( ) ( , )
; 2 1

u
R R z z u c u

u h c

v R BR z z b b b b s R b B b R l v R b
s R b l l

−′ ′ ′ = + + ⋅ −
+ −uL  (3) 

(see Deliverable 2 for the conventional constant designations), where 

( ) ( ) ( )2( , ) 1u R Rs R b R b b z b′ ′ ′= + + + +
r 2

z

)

       (4) 

with  being the infinitesimal hydrophobic surface corresponding to the cylindric-

symmetrical infinitesimal volume , where 

( , )us R b dR
r

( )uv R dR

 

( ) ( ) (
1 2

0
( ) 1 .u z R R zv R b d R b b z bξ ξ ξ ξ′ ′ ′= + + + +∫

2      (5) 

 

The corresponding analogues for the lower monolayer can be written by the replacement 

of the components of vector  and their derivatives by those of vector . ( )b R
r

( )q Rr

The Euler-Lagrange equations for the sought functions  

read: 

( ), ( ), ( ), ( ), ( )R z R zz R b R b R q R q R

 

d , , , ,
d R z R z, .X z b b q q

R X X
∂ ∂

= =
′∂ ∂

L L        (6) 



 

Taking into account that 0
z

∂
=

′∂
L  and also that 

 

d
d R z R z R z R z

R z R z R z R
z z b b b b q q q q

zR R z z b b b b q q q
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′′ ′ ′′ ′′ ′ ′ ′′ ′′ ′ ′= + + + + + + + + + +

′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂q
∂
′

 

 

we arrive at the set of Euler-Lagrange equations in the form 

 

1
2

2 4 6 8 10
22 24 26 28 210 2

3
4

2 4 6
24 44 46 4

5
6

2 4 6
26 46 66 6

7
8

2 8 10
28 88 810 8

9
10

2 8
210 810

dy y
dx
dy dy dy dy dyL L L L L
dx dx dx dx dx
dy y
dx
dy dy dyL L L B
dx dx dx
dy y
dx
dy dy dyL L L B
dx dx dx
dy y
dx
dy dy dyL L L B
dx dx dx
dy y
dx
dy dy dL L
dx dx

=

+ + + + =

=

+ + =

=

+ + =

=

+ + =

=

+ +

B

10
1010 10

y L B
dx

=
     (7) 

 

where 

 

1 2

3 4 7

5 6 9

; ( )i i

R R R R

z z z z

8

10

x R y y x z y z y
b y b y q y q y
b y b y q y q y

′= = = =
′= = = =
′ ′= = = =

′        (8) 

 

and also 

 
2 2

, ,i Ri
i i i ky R y y y

∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂
L L LL L L .ik=        (9) 

 3



 

 These quantities expressed in terms of the components of vectors  or/and ( )b R
r

( )q Rr  are 

given in Appendix. Besides, 

 

2 02 4 23 6 25 8 27 10 29

4 3 04 4 34 6 45

6 5 06 4 36 6 56

8 7 08 8 78 10 89

10 9 010 8 710 10 910.

B L y L y L y L y L
B L L y L y L
B L L y L y L
B L L y L y L
B L L y L y L

= − − − − −
= − − −
= − − −
= − − −
= − − −

       (10) 

 

Inserting (10) into (4) yields 

 

1 10( , ,... ), 1,...10i
i

dy f x y y i
dx

= =         (11) 

 

where 

 

( ) ( )

( ) ( )

( )

1 2 2

4 24 66 26 46 6 26 44 24 46
2 1 10 2 2

44 66 46

8 28 1010 210 810 10 210 88 28 810
2

88 1010 810

3 4 4

4 66 6 46 2 1 10 24 66 26 46
4 1 10

44

( )

1( , ,... )

( )
( , ,... )

( , ,... )

f y y

B L L L L B L L L L
f x y y B

Q L L L

B L L L L B L L L L
L L L

f y y
B L B L f x y y L L L L

f x y y
L L

=

⎡ − + −
= −⎢ −⎣

⎤− + −
− ⎥− ⎦

=

− − −
=

( )

( )

2
66 46

5 6 6

6 44 4 46 2 1 10 44 26 24 46
6 1 10 2

44 66 46

7 8 8

8 1010 10 810 2 1 10 28 1010 210 810
8 1 10 2

88 1010 810

( )
( , ,... )

( , ,... )

( )
( , ,... )

( , ,... )

L
f y y

B L B L f x y y L L L L
f x y y

L L L
f y y

B L B L f x y y L L L L
f x y y

L L L

−
=

− − −
=

−
=

− − −
=

−

   (12) 

( )
9 10 10

10 88 8 810 2 1 10 88 210 28 810
10 1 10 2

88 1010 810

( )
( , ,... )

( , ,... )

f y y
B L B L f x y y L L L L

f x y y
L L L

=

− − −
=

−

 

 

and 
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2 2 2 2
24 66 26 44 24 26 46 28 1010 210 88 28 210 810

22 2
44 66 46 88 1010 810

2 .L L L L L L L L L L L L L LQ L
L L L L L L

+ − + −
= − −

− − 2
2    (13) 

 

To numerically solve set (11) we have developed a program using the Runge-Kutta 

method with adaptive step size. In the vicinity of the zero point the integrals were computed by 

the Gauss method with prescribed accuracy. 

 We have obtained preliminary results showing that there exists some domain in the 

system parameters space where the solution can be found in a narrow interval of variable R ; 

however, extending this interval leads to solution instability (see Fig.1 as an example). The lattr 

is caused by a series of singularities like zero coefficients at the highest derivatives, etc. At 

present, the numerical scheme is under modernization aimed at removing such drawbacks. 

 

3. Minimization of the free energy functional by the method of local variations 

 

 At present, the program realizing the method of local variations (see Delivery 2) is at its 

testing-debugging stage. This program allows us to obtain the optimal configuration of the free 

membrane and monitor the changes of different components of the system energy. The program 

is implemented in two modifications which use direct variations or those in the Fourier space of 

the initial functions components. 

 These program versions are realized in the Object Pascal language in Delphi 5 Enterprise 

integrated development environment. The elementary surfaces are calculated with the linearized 

expressions (see Deliverable 2). The elementary volumes are calculated by numerical integration 

of the corresponding expressions with the help of the standard method of trapezoids. 

 In the first version we use the method of local variations under the integral condition of 

volume constancy whereas in the second – the method of shape variations under the same 

condition. Both versions use the standard method of unconditional successive multidimensional 

optimization in the presence of local steric restrictions. The exemplary screenshots are given 

below (see Figs.2-4). 
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Fig.1. Modelling of a planar bilayer (note a difference in xend in the upper and lower 

screenshots). 
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Fig.2. The beginning of the optimization procedure (method of local variations). 

 

 
 

Fig.3. The final result (equilibrium planar bilayer). 
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Fig.4. The course of optimization in the Fourier space. 

 

 The advantage of the method of shape variation consists in the guaranteed absence of 

punctual disruptions of derivatives which destabilize the computational scheme. Yet, each 

iteration requires full recalculation of the system geometry and energy parameters of the whole 

membrane, essentially impeding the program execution. 

 In both methods the principle of steric overlap exclusion for lipid headgroups situated in 

two neighbouring discretization points holds. To test the presence of such overlap, the following 

relationship for each pair of neighbouring discretization points i  and 1i +  is verified: 

 

1 1

i i

i i

d l
d l+ +

>⎧
⎨ >⎩

           (14) 

 

where  is the distance from the membrane midline to the point of crossing of directors of 

corresponding lipids,  is the whole length of the lipid (see Fig.5). If this relationship 

does not hold, then the corresponding variation causing the steric overlap is rejected. 

d

hl b l= +

 The volume constancy condition is introduced with the help of the standard Lagrange 

method of undetermined multipliers. The following term is inserted into the free energy 

functional: 
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( )∫ −= dRRvRvfV )()( 0λ  

 

where λ  is the Lagrange multiplier and  is the infinitesimal volume of the planar 

unperturbed membrane. The optimization problem is solved for a series of values 

0( )v R dR

λ  unless the 

value of пока значение Vf  becomes sufficiently close to zero. The search of the corresponding 

value of λ  is basically a standard task of finding the zero of a function of one variable and is 

performed by bipartitioning. 

di 
di+1

li 

li+1 

 

Fig.5. To condition (14). 

 

4. Conclusions 

 

The defined problem of optimization of the membrane shape in the presence of the CPP 

has turned out to be, methodically and technically, far more complex that it could be expected 

from the existing literature. Although the chossen approach, based on the extended OFM, in 

principle allows one to describe complex membrane structures of any shape, yet it has been 

previously exploited for calculations of mainly small deviations from the planar shape of the 

bilayer. In those cases the corresponding Euler-Lagrange equations can be linearized and the 

equilibrium shape of the membrane can be found comparatively easily. The general task of large 

nonlinear deformations is intrinsically complicated and specific for the following reasons: 

(i) the Euler-Lagrange equations are very complex in the general case; 

(ii) the solution corresponding to the planar unperturbed membrane represents a singularity 

of these equations. Consequently, this requires specific regularization procedures; 

 9



(iii) some terms of these equations contain integrals with their analytical expressions having 

critical points in the parameters range of interest. This forces to employ numerical 

computing of the integrals and leads to far lower computational intensity; 

(iv) finally, the functions under optimization are fast-varying and therefore strongly toughen 

the requirements to numerical algorithms. 

 

An alternative method of optimization – method of local variations – has also turned out 

quite complex and specific in realization. The corresponding complexities are connected with 

bifurcational dependences of the optimal solution on parameters values and also with the 

presence of multiple local minima, nonlocal character of the volume constancy condition as well 

as with the instability of the standard computational scheme with respect to punctual "defects". 

In view of this, we have decided to develop both approaches in parallel since none of them is 

noticeably preferable. 

The results obtained are of preliminary character and indicate the necessity of further 

development of the optimization procedure for the free energy functional in order to construct a 

stable scheme, yielding first of all the unperturbed/planar membrane shape. Then the numerical 

experiment on the (bilayer membrane + CPP) system will go comparatively smoothly. The 

development of sseveral computational approaches seems quite reasonable at the present stage. 

The need of some further modernization of the extended OFM model in order to obtain 

stable solutions for the unperturbed membrane looks also very likely. This will be cleared up in 

the course of further application of the above-described versions of the optimization schemes. 

Probably, more powerful computational means than presently used standard PCs will be needed. 

 

Appendix 
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 Here we decipher the designations used above, reflecting the complexity of the problem. 

Recall that the superscripts of monolayers (supposing identical expressions for both under the 

replacement ) and the bars denoting renormalized dimensionless quantities are omitted. 

Besides, we also omit the terms of the Lagrangian that contain 

b →

R  only (as full derivatives with 

respect to R , inessential for minimization) and denote 

 

( ) ( ); , ; hs R b s s R b l s≡ + %.≡  

 

 The first derivatives of read L



( ) ( )2 2 2
2

, , , , , .

c c

R z R z

s v v s b vB s v b l v b l
s

z b b z b b

μ ,
η η η η η
η

⎛ ⎞ ⎡∂ ∂ ∂ ∂ ∂ ∂
= + − + − + −⎜ ⎟ η

⎤
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣

′ ′ ′=

%
%

%

L
⎦  

 

Here 1 .
1 c

B
l

μ −
≡

−
 In terms of the problem variables 

 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )

( ) ( ) ( )

( )
( )

2 2
1

1

2 2
1

2 2
1

1 2 2

0
1 2

2 1 00

1

1 12
2 1 0 10 0

1 12
1 2 1 0 10 0

0

1

1

1

1

1

R R z R

R

R z

R z

z R R

z R

z R

s R b b z b R b K

s R b K

K b z b

K b z b

v b d R b b z b

b d R b A A A

b RI b I

I d A A A K d

I d A A A K d

A

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

′ ′ ′= + + + + ≡ +

= +

′ ′ ′= + + +

′ ′ ′= + + +

′ ′ ′= + + + +

≡ + + +

≡ +

= + + =

= + + =

′= +

∫

∫

∫ ∫

∫ ∫

%

%

%

%

( )2 2
1 2; 2 ;R z R zz A b z b A b b

z

2.′ ′ ′ ′ ′= + = +

 

 

Introduce aslo 

 
21

0
1
21

30
1

n

n

n

n

dI
K

dJ
K

ξ ξ

ξ ξ

−

−

=

=

∫

∫

%

%

 

 

for , and 2n ≥

 

1

1 1

2

3

1 3

1

1

.

h
R

R
z

z
h

z R
h

l sP R b
b K

vR RI b I
b

bl
b

b bl
b

⎛ ⎞≡ + + =⎜ ⎟
⎝ ⎠

≡ + =

Λ ≡ +

Λ ≡
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Besides, 
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4

5

( )
( )
( )

1 2 3

2 3 4 5

3 3 4 ,

z R R z

R R R R

z R R z

t Rz I Rb b z I b b I

t RI Rb b I b b I

t Rz I Rb b z I b b I

′ ′ ′ ′≡ + + +

′ ′≡ + + +

′ ′ ′ ′≡ + + +

 

 

and of course 2 2
R zb b b= + . 

 Below we list the derivatives entering Eqs.(7). 
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22 1 2 2

2 2
1 11

2
2 2 22 1 1

2 1 2 12 3 3
1 1 1 1
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3
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μ⎡ ⎤′+∂ + ∂ ∂
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⎠
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 The volume constancy condition requires derivatives v
η
∂
∂

 and also various second partial 

derivatives of . Here they are: v
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 Auxiliary relationships: 
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etc. So that, e.g., 
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so forth. 
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EOARD Partner Project 211 – Deliverable 4 

 

1. Introduction 

 

 In this last Deliverable we present some results of calculations within the framework of 

our modification of the opposing forces model (OFM), in particular, with allowance of tilt 

rigidity of lipid layers. The changes of the membrane shape in the course of peptide binding and 

further insertion into the membrane are described. The calculation program allows one to 

investigate the influence of ionic strength, peptide charge and shape, membrane parameters, etc, 

upon the binding energy and the system energy profile. At the same time, close attention is 

focused to the revealed limitations and inconsistencies of some points of the OFM that impede 

its full-value application to the analysis of the translocation process. Thus, apart from necessity 

of involving the tilt rigidity, the topological and energetic drawbacks of the OFM are shown, as 

well as its criticality to instabilities of lipid aggregates described within its framework (first of 

all, of a planar (bi)layer) and to non-locality of some of the OFM basic relationships. The ways 

of eliminating these drawbacks are pointed out. Proceeding from all this, several promising leads 

of further research are analyzed in detail. 

 

2. Computational scheme  and results 

 

 It has become evident in the course of modeling that the extended OFM has several 

serious drawbacks. In particular, with the typically exploited free energy functional [1] it is 

unable to produce the unperturbed shape of a planar membrane (see below). Apart from solving 

these problems theoretically, we managed to achieve the convergence of computational scheme 

by introducing the tilt rigidity term of ~10 kT into the optimized functional. The volume of the 

hydrophobic part of the membrane was maintained fixed by applying a standard scheme with 

Lagrange multiplier λ  which value was guessed by tries-and-errors. Luckily, the value of λ  

appears to be independent of the electrostatic shielding constant and membrane dimensions, that 

made the calculations feasible without re-evaluation of λ , what is extremely costly 

computationally. 

It is necessary to note that the shape of the membrane in our computations is presented as 

a series of few cosines; therefore, possible deformations of the membrane are limited to those 

described as a finite sum of cosines. Particularly, point defects of the lipid packing that require a 

very large number of Fourier components cannot emerge in calculations. This is a possible 

reason of the fact that the computational scheme is stable while the underlying energy functional 

has no stable steady-states in terms of Lyapunov stability analysis. 
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2.1. Computational details 

 

 The program that implements the algorithm of shape variations (see Deliverable 2,3) was 

used with several modifications. The program searches for five unknown functions, z, b, q, θ  

and φ  in the interval from 0 to L. Each function is expanded in a series of M sines or cosines as 

follows: 
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where M is the number of harmonics. 

The same expansion as for z is used for b and q and the same expansion as for θ  is used 

forφ . This choice of expansion coefficients allows us to satisfy the desired boundary conditions  
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( ) 0
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z L

θ

=
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=
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=

 

 

automatically. The same conditions are also applied to other functions. This ensures that that the 

studied segment of the membrane is smoothly connected to the unperturbed planar bilayer at 

point L and there is no tilt of lipid directors at point R=0 (prohibited by symmetry). The 

derivatives of all functions are computed analytically. The program performs the minimization in 

the space of expansion coefficients iz% , ib% , iq% , iθ%  and iφ%  using the method of simple 

unconditional minimization (see Deliverables 2,3). 

 The electrostatic interaction between the charged peptide and the membrane is taken in 

the form 

 

1 0 00

( )1 ( )
exp

4 ( ) ( )

pN L
je u

elect
j j h

d Rq s R
E dR

d R a R dπε=

 
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 
∑∫ , 
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where Np is the number of charges of the peptide, 0ε  is the vacuum dielectric constant, qe is the 

elementary charge, ( )us R dR  is the infinitesimal area of the interface at the level of the polar head 

groups, ah is the area per lipid at the same level, d0 is the shielding constant for electrostatic 

interactions (similar but not identical to the Debay length in continuous electrolyte, and dj is the 

distance from the j-th charge of the peptide to a given element of the membrane surface: 

 

( )22
int int( ) ( ) ( )j jd R X R Z R z= + − , 

 

where Xint and Zint are the coordinates of heads of the lipids anchored at point R; jz is the 

coordinate of the j-th charge of the peptide (the latter is positioned at x=0). Multiple charges are 

positioned evenly along the peptide as described below. 

 The close contact of the peptide with the membrane is modeled by the “nearly hard core” 

potential assigned to the peptide: 

 

12 ,
( )( )

,

core
coreVDW

core

k r r
r rE r

K r r

δ

δ

 > + −= 
 ≤ +

 

 

where rcore is the radius of the hard sphere that surrounds the lowermost charge of the peptide, k 

and K are adjustable parameters, r is the distance between the given discrete portion of the 

interface and the lowermost charge of the peptide, δ  is a very small shift. In typical simulations 

k=1, K=1010, 810δ −= . The common problem of modeling the constraints in variation methods is 

the “dead lock” which often occurs after the first contact with the hard core. Our form of 

interaction produces a behavior which is almost indistinguishable from that under the true hard 

core impermeability criterion and allows us to overcome computational complications. 

 

2.2. Shape of the membrane 

 

The following series of snapshots illustrates the principal behavior of the membrane with 

the peptide approaching. The value of the electrostatic shielding constant is kept very high (25 Å) 

in order to make the shape variations more pronounced. At the first stage the membrane remains 

unaffected in its equilibrium state (Fig. 1a). When the peptide goes closer to the charged interface 

the electrostatic attraction begins to curve the membrane toward the peptide forming a bell-like 

shape maintained by the balance of electrostatic and elastic forces (Fig. 1b). Eventually the 
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membrane collides with the hard core of the peptide (Fig. 1c). Starting from this stage the forces 

of hard-core van-der-Waals (VDW) repulsion and electrostatic attraction act in opposite 

directions. As a result the peptide “digs” a central well in the upward bell-like shape of the 

membrane forming the "M-like" shape (Fig. 1d). Since the peptide goes close to the membrane 

baseline, the average curvature of the M-shaped membrane decreases and the associated elastic 

energy becomes small in comparison to early bell-like structures. However, the electrostatic 

interaction energy between the peptide and the charges membrane interface remains high. As a 

result, the M-like structures correspond to the minimal energy of the membrane-peptide system 

and are likely to be observed in reality. Further approach of the peptide forces the membrane to 

follow it. The wings of the M-shape become flattened and the central depression under the 

peptide becomes the dominant feature (Fig. 1e). Further movements of the peptide lead to the 

deepening of this depression and to dramatic increase of the elastic deformation energy (Fig. 1f). 

The plots under the schemes of the membrane show the deviations of the lipid director length 

(blue – the upper monolayer, grey – the lower) and the director tilt angles (red – the upper 

monolayer, green – the lower). The deviations are not scaled and serve for comparative purposes 

only. 

The value of the shielding constant d=25 Å is not realistic since it corresponds to the 

environment of very low ionic strength. More realistic values are d=3÷6 Å. For such values the 

overall picture of the membrane deformations remains the same but becomes much less 

pronounced. 

 

 

 

a) No interaction 

b) Formation of the 
bell-like shape 
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Fig. 1. Snapshots of the membrane shape for various positions of the peptide (see the 

text). Radius of the modeled part of the membrane is 140 Å (shown cross-section is 280 Å wide). 

The peptide is modeled by a hard 10 Å sphere with the single point charge in its center. Vertical 

scale is double-stretched to make the shape variations more pronounced. 

 

c) First hard-core 
contact 

d) The M-shape 

e) Flattening of 
the M-shape 

f) Depression 



 6 

2.3. The influence of ionic strength 

 

 We calculated the potential energy profiles of binding for different values of the shielding 

constant. The results are shown in Fig.2. It is clearly seen that the shielding constant influences 

the shape and the depth of the energy profile dramatically. Decrease of the shielding constant 

decreases the binding energy in non-linear fashion (Fig.2). The most physiologically relevant 

value of the shielding constant is rather hard to estimate since it includes not only the 

conventional Debay factor, but also the effective influence of the polarization effects and local 

conformational changes in the membrane and the peptide. The value of 5Å can be assigned as a 

reasonable estimate that leads to the binding energy of 7.7 kT. This value is quite close to 

experimentally determi ned binding energy per peptide. It is necessary to emphasize, however, 

that this value is obtained for a single point charge approaching to the membrane, thus it can be 

considered as a rough estimate only. 

 

2.4. The influence of the peptide charge 
 
 

To study the influence of distributed peptide charge on the binding energy, we adopted 

the following model of the peptide. The latter is represented by a vertical line of length L=15 Å. 

The first charge is located at the lower end of the line, while others are distributed at even 

distances along the line. The hard-core repulsion was calculated for the lowest charge only since 

other charges do not contact with the membrane surface directly. The shielding constant is fixed 

at the value of 5Å. It can be seen in Fig.3 that the increase in the peptide charge leads to gradual 

(almost linear) increase in the binding energy. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Energy profiles and binding energy at different levels of shielding. 
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Fig. 3. Energy profiles and the binding energy for various peptide charges. 

 

3. The OFM model should be further modified to describe pore formation  

 

The ultimate goal of the current study is to simulate the formation of the pore in the 

membrane caused by the influence of the CPP. The most probable mechanism of pore formation 

is formation of the semi-toroidal micelle-like rim around the water-filled pore. This excludes 

unfavorable contacts of lipid tails with water and forms a hydrophilic channel for the permeating 

peptide. Formation of such a membrane shape implies that the packing of the lipid tails is not 

uniform and differ considerably in the micellar rim and in the distant parts of planar bilayer. It 

was claimed in several publications (see Refs. in Deliverables 2,3) that the modified semi-

phenomenological OFM model is applicable to membrane shapes with non-uniform chain 

packing. Particularly, the energy of the semi-micellar bilayer edge was computed [1]. However, 

there is one extremely important assumption in these works, not emphasized by the authors but 

critical for applications of the modified OFM model. In all mentioned works the existence of a 

stable symmetric bilayer is postulated, not derived from the first principles. This approach looks 

sufficient if the geometry of the membrane system under study is simple enough and known from 

experiment. However, it fails if there is no a priori knowledge of the membrane shape. The 

binding problem implies that the membrane remains in the bilayer form but bends to 

accommodate the peptide. This process can be classified as manageable by the OFM-like model 

we use. However, the problem of pore formation is an unfavorable case when there is no notion 

of the shape of intermediate states of the membrane. 

Let us examine the problem in more details. The transition from a planar bilayer to a 

semi-toroidal pore changes the topology of the membrane surface qualitatively. In rigirous 

topological terms, a planar membrane is isomorphous to a sphere, while a pore is isomorphous to 

a toroid. Within the OFM the membrane is treated in continuous approximation and the lipid 
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directors are “anchored” on the membrane midline. However, the latter becomes discontinuous 

when the membrane evolves from a bilayer to a pore. Since all energy contributions are 

expressed in terms of the midline, they are not topologically invariant. The simplest illustration is 

given in Fig. 4a. In the “ideal” membrane edge capped by the micellar region the directors of all 

lipids that form the micellar cap originate from the same point (the origin of the membrane 

midline). At the same time, in the bilayer part, only one lipid per monolayer can originate from 

the same point. In Ref.1 this problem was solved by assuming that the micellar cap is already 

formed. Then the system was split into two topologically different parts –the bilayer and the 

micelle and different energy functionals were written for each of them. However, we can not go 

this way because we have to describe the formation of the micellar part, that is, a smooth 

transition from the geometry of a bilayer to the geometry of a micelle. The only possible way to 

do this is illustrated in Fig. 4. If the number of discrete points that represent the membrane is 

large enough, then the difference between these two representations becomes negligible. 

However, it is still impossible to describe a smooth transition from the bilayer to the pore. 

In order to form the “seed” of the pore, the origin of the midline (bold dot in Fig.4) should move 

away from zero (symmetry axis of the future pore). In this case there is no lipid “anchored” 

between the pore axis and the midline origin. From the physical point of view this means that the 

tails of the lipids closest to the axis will repack themselves to fill the gap. Since this packing will 

obviously be not ideal, the system energy will increase. However, appearance of such a gap 

becomes fatal for the OFM. The energy of the membrane is computed as an integral over the 

midline, and the regions where the latter is absent contribute nothing to the total energy. In other 

words, the “missed volume” shown in Fig.4 has zero energy in terms of the OFM. The system is 

absolutely invariant to the size and shape of this region, what contradicts physical reality. 

The next step of pore formation is the rapture of the interfaces. This allows water to fill 

the pore and to contact with the hydrophobic tails of the lipids. In reality, such a contact is 

extremely unfavorable and the first lipids of the upper and lower interfaces will approach each 

other to eliminate the hydrophobic mismatch. However, the OFM contains no explicit terms 

describing the hydrophobic mismatch – the system does not “feel” that the tails are exposed to 

water. 

There is one more energy term missed in the OFM. The heads of the lipids are often 

charged and repel each other. This interaction within single interface is implicitly described by 

the / hB a  term of the OFM. However, if two separate interfaces are located close to each other, 

there is a strong electrostatic interaction between them. This interaction should be described 

explicitly but it is missed in the OFM. Introduction of this additional energy term is far from 

trivial. The micellar cap formally consists of two parts – one from the upper and another from the 

lower interface. An explicit electrostatic interaction should act between these parts, but at the 
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same time the interface of the micelle is topologically continuous and should be described by the 

implicit term itself.  

All the three energy components missed in the OFM are schematically shown in Fig.4. 

 

4. Internal inconsistencies of the extended OFM 

 

4.1. The tilt energy 

 

 It is well known that lipid bilayers possess some rigidity to tilt deformations that are often 

described in the linear approximation by the tilt modulus (see e.g. [2]). The physical meaning of 

tilt rigidity in terms of the OFM originates from the fact that the fluctuating hydrophobic tails of 

the lipids cannot cross the interface with water in order not to be exposed. If the director of a 

lipid is tilted from the normal of the hydrophobic-water interface, a certain part of the space 

available for the fluctuating hydrocarbon chain in normal orientation becomes excluded. This 

leads to some loss of conformational freedom and, as a result, to the change in the entropic 

contribution to the free energy of the lipid. The energy term associated with this effect can be 

written approximately as 2αtilttilt kE = , where α  is the angle between the normal to the 

hydrophobic-water interface and the lipid director, and ktilt is the tilt modulus. It was shown that 

the tilt rigidity of the bilayers is quite high and the tilt modulus reaches ~10 kT [2]. However, this 

term was not included into the modified OFM. We have found that this term is vital for 

maintaining the stability of the membrane. If this term is omitted, certain “unfortunate” situations 

can appear during the optimization when the lipids orient themselves almost parallel to the 

interface and get stuck in this geometry (see Fig.5). This configuration is clearly nonphysical, 

since the hydrocarbon tails have significant thickness and will be exposed to water if α  is close 

to 90°. We introduced the tilt term into our simulations and assigned the value 10 kT to the tilt 

modulus. 

 

4.2. The challenge of non-locality 

 

In order to find the area and the volume per lipid the following expressions are used (for the sake 

of clarity we here consider a quasi-one-dimensional case that does not restrict the problem 

generality): 
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Fig. 4. 

Ideal edge Simulated edge 

“Missed volume” 

Explicit hydrophobic 
mismatch Electrostatics 

between interfaces 

Unperturbed bilayer 

Origin of the midline 
moves from zero, forming 
a seed of micellar 
topology, but the interfaces 
remain continuous. 

Origin of the midline 
moves further, the 
interfaces break, the 
semitoroidal rim forms, but 
the tails of lipids at the edge 
are exposed to water. 

Former upper and lower 
interfaces merge forming a 
complete semi-toroidal 
micelle-like rim with no 
hydrophobic mismatch. 
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what is approximately valid if minR R∆ << , where Rmin is the minimal local curvature radius of 

the monolayer in the course of membrane deformation. For large deformations this 

approximation is not valid and, strictly speaking, both equations should be solved to find R∆ . 

The latter is the radial size of an average lipid anchored at point R of the midline. It is easy to 

show that for an unperturbed bilayer 0~ bR∆ , where b0 is the equilibrium thickness of a 

monolayer (typically ~ 10 Å). This means that an object that spans the radial dimension of ~10 Å  

is treated as an infinitesimally small volume which is integrated over R to obtain the total energy 

of the monolayer FM (see e.g. Eq.(12) in Deliverable 2). 

However, it has turned out to be a rather rough approximation. In fact, in the micellar part 

of the system min~R R∆  and the area per lipid should be expressed by the functional 
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= ∫ . In this case the minimization of the functional FM can no longer be 
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“functional of a functional”. Minimization of such a complex construct is itself a non-standard 

and challenging mathematical problem. Additional complication comes from the fact the 

computational methods of optimization of such complex “double” functional are underdeveloped 

(our results to these specific issues are now in progress and will be presented elsewhere). 

 

4.3. The ambiguity of the constant volume constraint  

 

 A physical formulation of our problem implies the “flat unperturbed membrane” as a 

reference state. This trivial phrase contains a subtle pitfall, however. A real biological membrane 

(say, a liposome of large radius) has a fixed total volume of the hydrophobic core, conserved 

with high accuracy. We consider a much smaller piece of the membrane and imply that it 

remains unperturbed infinitely far from the point of perturbation by the peptide. In practice, we 

consider the fraction of the membrane spanning from l−  to l, where l~100-200 Å. In the 

unperturbed state this piece contains N lipids and has volume V of the hydrophobic core. 

Perturbation of the membrane causes the changes in chain packing and redistribution of lipids 

along the membrane. Suppose that the membrane takes a bell-like shape (see Fig.6). The lipids 

located at points l and l−  tend to move toward the center of perturbation. Several kinds of the 

boundary conditions are then possible: 

(i) Impermeable walls – no lipids can cross the boundaries, l const= , N const= , 

V const= . If the membrane is deformed, its area increases and substantial surface tension 

appears. The energy of this artificial strain is added to the “intrinsic” deformation energy of the 

membrane introducing some systematic error. 

(ii) “Transparent” walls – the lipids can freely cross the boundaries, l const=  but N and 

V are not conserved. This seems to be the most physically correct version – the lipids can leave 

the given volume but accumulate outside in some other parts of a huge liposome. In practice, this 

leads to the fact that all lipids tend to leave the volume. The reason of this is that the energies in 

the OFM are always positive and, therefore, the state with no lipid is, erroneously, the global 

energy minimum. Thus, this type of boundary conditions is not applicable. 

(iii) Moving impermeable walls – no lipids can cross the boundaries, N const= , 

V const= , but the value of l can be adjusted to reduce the tension caused by deformation. This 

type of boundary conditions is the most preferable since it retains the integrity of the membrane 

and eliminates artificial strain. Unfortunately, moving boundaries are quite hard to implement 

computationally because the discrete lattice used in simulations should be redefined at each 

iteration. This results in numerous specific problems and greatly increases computational burden. 

That is why we decided not to implement this method until we improve the accuracy of the 
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membrane model to the point when the error introduced by additional mechanical strain will 

become detectable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. 

 

4.4. Stability problem 

 

 In this subsection we elucidate a crucial point at issue for the OFM validity, namely, the 

stability of lipid aggregates within the OFM framework.  

To illustrate the problems arising in the procedure of minimization of the free energy 

functional, we first consider a Lagrangian ( ( ), ( ))y x y x′L  entering functional ( , )y y dx′∫ L  and 

corresponding Euler-Lagrange equations 
d

y dx y
∂ ∂

=
′∂ ∂

L L
, or 

 

12 2

2y y
y y yy

−
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provided that L  does not depend on x  explicitly. Obviously, the "stationary" solution sy  of 

Eq.(1) is defined by the equation 

 

0
sy

∂ =
∂
L .           (2) 

 

 Here and below the subscript s labels the functions taken at , 0sy y y ′= = , that is, for 

( , )y yφ ′  ( ,0)s syφ φ≡ . In the standard linear analysis of stability one re-writes (1) as a set of two 

first-order equations for variables 1 2,y y y y′= = : 

 

( )

1
2

12 2
2

2 2 1 22
1 1 22

, .

dy y
dx

dy
y F y y

dx y y yy

−

 =

    ∂ ∂ ∂ = − ≡    ∂ ∂ ∂∂   

L L L
      (3) 

 

and solves the characteristic equation of set (3) linearized in the vicinity of point 

( )1 2, 0sy y y= = . The corresponding roots read: 

 

2

2 2 2
1,2

2 2 1

1 1
2 4

s s s

F F Fk
y y y

 ∂ ∂ ∂= ± +  ∂ ∂ ∂ 
, 

 

so that stability ( )1,2Re 0k <  requires the following inequalities to hold: 

 

2 2

2 1

0, 0.
s s

F F
y y

∂ ∂
< ≤

∂ ∂
 

 

However, it is easy to find that  
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−     ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − − −    ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂    
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so that 2

2

0
s

F
y

∂
=

∂
 because 

1

0
s

y
∂

=
∂
L

, see Eq.(2). This means nothing else than stationary states of 

the variational problem with such kind of Lagrangian are always unstable (as it should be 

expected from a corresponding mechanical analogue). In our context, we thus conclude that the 

OFM is not able to ensure the existence of a stable planar (bi)layer! 

 One of the ways out of the situation is to insert an artificial decay term proportional to 

( )y′−  in the r.h.s. of (1), exactly as the friction term is introduced in equations of classical 

mechanics. Of course, in our case physical meaning could hardly be attached to such "friction". It 

is worth to note, however, that this term affects neither the stationary solution sy  nor the stability 

domain in the parameter space (in particular, the coefficient 0β >  in this formal term yβ ′−  can 

be even infinitesimal). Indeed, if we suppose that now 

 

( )
12 2

2 1 2 2 22
1 1 22

,F y y y y
y y yy

β
−

   ∂ ∂ ∂≡ − −   ∂ ∂ ∂∂   

L L L  

 

in (3), then we always have 2

2

0
s

F
y

β
∂

= − <
∂

, sy  remains unchanged, and the stability domain is 

defined by the (independent of β !) condition: 

 

12 2
2

2 2
1 1 2

0, or 0
s

s

F
y y y

−   ∂ ∂ ∂ ≤ ≤  ∂ ∂ ∂    

L L .       (4) 

 

 Return now to the simplest case of a lipid layer within the extended OFM. To analyze the 

problem, there is no need in all the five sought functions of our model of the membrane. We can 

come to relevant conclusions by considering a quasi-one-dimensional model of a lipid layer in 

which all the lipids are perpendicular to the baseline, and the latter is fixed straight.  Then the 

only variable under consideration is the lipid length b  (so that ,y b y b′ ′= = ). In the reduced 

(dimensionless) units introduced before the corresponding functional reads 

 

[ ] ( )
( ) ( )2

22

2
0 0

( ) ( )

0 0

1
1

( , )

l b l b

c

l b l b

Bbb b b l b dx bdx
b

L b b dx bdx

µ λ

λ

 
′Φ = + + + − + 

′+ 

′≡ +

∫ ∫

∫ ∫
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where the second integral represents the lipid volume constancy condition 
( )

0

l b
bdx V=∫ , λ  is the 

Lagrange multiplier, ( ) ( )1 / 1 cB lµ = − − , and ( )l b  is the layer length ("movable walls"); here we 

omit the bars over dimensionless parameters, see Deliverable 2. The Euler-Lagrange equation 

reads 

 

12 2

2
L L Lb b

b b bb
λ

−
   ∂ ∂ ∂′′ ′= − +   ′′ ∂ ∂ ∂∂   

 

 

and its stationary solution is defined by the equation 
0

0
b

L
b

λ
′=

∂+ =
∂

, i.e. by 

 

( )2 23 1
2

2 2s s c cb b B l lµ µ µ λ− − − − =         (5) 

 

which can be also regarded as an equation to determine λ , for in this case sb  can be found from 

the following simple considerations. Precisely, for the planar layer the condition 
( )

0

l b
bdx V=∫  

immediately results in the relationship ( ) / .s sl b V b=  Recall now that 
( )

0

l b
Ldx∫  is nothing else 

than 
( )

0
0

l b f
bdx

v∫ . If sb b= , then this integral is reduced simply to ( )0 0
0s s

f f
b l b V Nf

v v
= =  where 

N  is the number of lipids. Therefore, for a planar layer the minimum of the functional 

corresponds to the minimum of 0f , that is 0sb b= ; in our dimensionless units 0 1b =  (see 

Deliverable 2). In particular, from (5) one has that 
21 3

2 2
1 2

c
c

c

B l
B l

l
λ

 − +
= − + − −  

. 

 The stability condition (4) now reads 

 

12 2

2 2
1
0

0
b
b

L L
b b

−

=
′=

    ∂ ∂  ≤  ′∂ ∂     
. 

 

As 
3 2

(1,0)
1

c
bb

c

B l
L

l
− −

=
−

 and (1,0) 1b bL B′ ′ = − , we have 
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Fig.7 shows the quantity ( )2 /
s

F y∂ ∂ as a function of parameters , cB l  and the 

corresponding stability domain defined by (6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. 

 

  

The return of the parameters to their initial dimensions is not trivial because 0b  itself is 

defined as a root of the cubic equation ( )3 2 2
0 02 2 0cvb B vl b vτ τ γ+ − − =  (see Deliverable 2, 

Eq.(13)); here the coefficients are bar-less again. Of course, this conversion can be performed 

numerically. An example for the parameter values typically used for lipid membranes is shown in 

Fig.8. One can see how delicate the problem of stability of the planar layer is. 

 

 

 

        Fig. 8. 

   0.1τ =  kT/Å2;  0.12γ =  kT/Å2;  432v = Å3. 
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5. Research perspectives 

 

 The present pilot project allowed us to evaluate one of the possible approaches to 

description of the CPP permeation. This approach is based on the modified semi-

phenomenological OFM-like model. This model, to our knowledge, is the most detailed among 

available continuous membrane models and pretends to describe non-uniform chain packing of 

various membrane topologies. However, we revealed fundamental obstacles which discouraged 

us from using this model "as is", without substantial modification or even development of new 

concepts. We see the following three directions of research that can be further developed 

proceeding from the results of the project: 

 

A. Development of a continuous semi-phenomenological model, free from the drawbacks 

of OFM-like models. 

Requirements: 

1. The energy function contains both surface and volume terms sensitive to the local 

geometry. 

2. The lipid directors are anchored on the hydrophobic-polar surface that remains 

continuous in all possible membrane perturbations and rearrangements. 

3. The volume energy terms allow for possible not ideal packing of lipid tails and for 

interactions between different monolayers. 

4. The relationship between the area and volume of the average lipid anchored in the given 

point is non-local. It depends on the geometry of the certain membrane segment spanned 

by the lipid, not only on the geometry at the anchoring point. 

5. Additional surface terms describing long-range electrostatic interactions should be added. 

6. A flat unperturbed monolayer is a stable steady-state without any additional constraints or 

assumptions. 

Benefits: 

1. Simple enough to find the optimal membrane shape of a perturbed membrane by low-cost 

computational techniques. 

2. The variety of parameters that correspond to real membranes and CPPs can be testes. 

Limitations: 

1. It is not clear if all the requirements can be met simultaneously. 

2. The results obtained are only semi-quantitative and depend strongly on the quality of 

empirical parameters. 

3. Hard to correlate some empirical parameters with experimental data. 

4. Can never answer the question about atomic-scale details of permeation. 
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 B. Development of a highly simplified discrete molecular-level model of the membrane. 

Requirements: 

1. Each lipid is modeled as a simple rod-like object. 

2. An empirical force field should be developed to describe the interactions between the 

rods in order to mimic the basic behavior of lipids.  

3. The model should mimic only the very basic mechanical properties of the membranes, no 

need to describe smaller details. 

4. The charges of the polar heads are included explicitly as well as electrostatic interaction 

with the peptide.  

Benefits: 

1. Eliminates the topological problems of the OFM-like models because the lipids are 

modeled at the molecular level. 

2. Can model any shape of the membrane, provided that a correct force field is supplied. 

3. Specific interactions of the peptide with the membrane (like strong binding of arginines to 

phosphates) can be taken into account by additional energy terms. 

4. Can be used to model the permeation in dynamics, not just to evaluate the energy profiles 

of permeation. 

5. It is much cheaper computationally than molecular dynamics, allowing longer simulations 

and experiments with various parameters. 

Limitations: 

1. The development and validation of the force field is a quite tedious task. 

2. The force fields for rod-like particles are inconsistent with existent molecular simulation 

software. Modification of the existing programs or de novo design of the simulation 

package is required. 

3. The results obtained are still semi-quantitative only and depend strongly on the quality of 

the force-field. 

 

 C. Molecular simulations at the atomic or nearly-atomic level. 

Requirements: 

1. The methodology of such simulations is well known in general but should be adapted to a 

particular task. 

2. The protocol of pulling the peptide through the membrane should be developed because 

spontaneous permeation is beyond the reachable timescale. 

3. The method should be used in conjunction with analytical techniques to analyze the free 

energy profiles of permeation and to calculate the transition rates. 
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Benefits: 

1. Well-defined methodology and extensively tested force-fields for the membrane and the 

peptide. 

2. Atomic-level details of all binding and permeation events. 

3. Explicit comparative tests of real peptides and membranes are possible. 

4. We have established contacts with a world-leading molecular dynamics group in 

Groningen. It is possible to negotiate the usage of their experience and technical 

capabilities. 

Limitations: 

1. The method of molecular dynamics is extremely demanding computationally in 

comparison with previous two ones. Supercomputers/clusters are needed. 

2. The time scale of simulations is limited to ~100ns what is insufficient to observe 

spontaneous permeation events. The “pulling” should be used, allowing to produce the 

approximate free energy profiles of permeation only. 
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Summary 

 

 The main purpose of the present project was a theoretical investigation of the possibility 

of translocation of some positively charged peptides (so called cell-penetrating peptides, CPPs) 

through artificial phospholipid bilayer membranes and evaluation of the influence of different 

physicochemical factors upon this process. 

 As a result of analysis of the current, often contradictory experimental data it has become 

clear that reliable conclusions on the feasibility of the given non-standard phenomenon can be 

obtained only on the basis of its physical modeling within a microscopic (to reasonable extent) 

approach. Proceeding from available computational means, we have chosen the known (and 

widely used in current literature on membrane systems) opposing forces model which is 

considered as the most suitable for describing large deformations of lipid aggregates and their 

complexes with proteins. 

 We have developed an OFM version aimed at a unified and continuous description of the 

process of binding and translocation of the peptide, including complex changes of the system 

geometry. In fact, a new approach to the minimization of the free energy functional of systems 

with essential non-locality and a corresponding computational formalism is constructed. 

Computer programs are created which allows one to elucidate the shape of a peptide-membrane 

complex and to calculate the binding energy and energy profile of the system under further 

insertion of the peptide into the membrane, to investigate the dependences of these characteristics 

on the ionic strength, peptide charge, membrane parameters, etc.  

 At the same time, in the course of project execution we have revealed a series of essential 

drawbacks and inconsistencies of the OFM which hinder its application for a full translocation 

process, especially at the pore formation stage. We present a detailed analysis of these drawbacks 

and formulate the principles of construction of a distinctly improved phenomenological model, 

capable of correct description of membrane rearrangement topology. On this basis we develop 

the prospective trends of further research, rating them on their success criteria. 
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